Complex networks in the climate system

by Jonathan Friedemann Donges

Institution: Universität Potsdam
Year: 0
Record ID: 1100403
Full text PDF: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/4731


Complex network theory provides an elegant and powerful framework to statistically investigate the topology of local and long range dynamical interrelationships, i.e., teleconnections, in the climate system. Employing a refined methodology relying on linear and nonlinear measures of time series analysis, the intricate correlation structure within a multivariate climatological data set is cast into network form. Within this graph theoretical framework, vertices are identified with grid points taken from the data set representing a region on the the Earth's surface, and edges correspond to strong statistical interrelationships between the dynamics on pairs of grid points. The resulting climate networks are neither perfectly regular nor completely random, but display the intriguing and nontrivial characteristics of complexity commonly found in real world networks such as the internet, citation and acquaintance networks, food webs and cortical networks in the mammalian brain. Among other interesting properties, climate networks exhibit the "small-world" effect and possess a broad degree distribution with dominating super-nodes as well as a pronounced community structure. We have performed an extensive and detailed graph theoretical analysis of climate networks on the global topological scale focussing on the flow and centrality measure betweenness which is locally defined at each vertex, but includes global topological information by relying on the distribution of shortest paths between all pairs of vertices in the network. The betweenness centrality field reveals a rich internal structure in complex climate networks constructed from reanalysis and atmosphere-ocean coupled general circulation model (AOGCM) surface air temperature data. Our novel approach uncovers an elaborately woven meta-network of highly localized channels of strong dynamical information flow, that we relate to global surface ocean currents and dub the backbone of the climate network in analogy to the homonymous data highways of the internet. This finding points to a major role of the oceanic surface circulation in coupling and stabilizing the global temperature field in the long term mean (140 years for the model run and 60 years for reanalysis data). Carefully comparing the backbone structures detected in climate networks constructed using linear Pearson correlation and nonlinear mutual information, we argue that the high sensitivity of betweenness with respect to small changes in network structure may allow to detect the footprints of strongly nonlinear physical interactions in the climate system. The results presented in this thesis are thoroughly founded and substantiated using a hierarchy of statistical significance tests on the level of time series and networks, i.e., by tests based on time series surrogates as well as network surrogates. This is particularly relevant when working with real world data. Specifically, we developed new types of network surrogates to include the additional constraints imposed by the spatial embedding of vertices in…