AbstractsPsychology

Neuronal and behavioral mechanisms of Gestalt perception

by Johannes Rennig




Institution: Universität Tübingen
Department:
Year: 2015
Record ID: 1102496
Full text PDF: http://hdl.handle.net/10900/58600


Abstract

Principles of Gestalt perception have fundamentally influenced our understanding of visual cognition. In the past century, Gestalt psychologists postulated that the human brain determines single elements with common features as a single entity rather than a sum of separate parts. The importance of Gestalt perception is emphasized by the neuropsychological syndrome simultanagnosia. Patients suffering from this condition have lost the ability to integrate single elements into a superior entity. Simultanagnosia is usually associated with bilateral posterior temporo-parietal brain lesions but the exact neuroanatomy of global Gestalt perception and functions of areas already associated with this perceptual quality are still a matter of lively debates. Further, not much is known about behavioral characteristics of wellexplored perceptual processes, like visual constancy, in the context of Gestalt perception. The present work aimed at investigating neuronal and behavioral properties of Gestalt perception applying psychophysical methods and functional magnetic resonance imaging (fMRI). In previous neuroimaging studies the temporoparietal junction (TPJ) was identified as a crucial brain structure involved in Gestalt perception. However, its specific role in Gestalt perception is still unclear. The functions attributed to this brain region range from attentional selection between the local and the global level of hierarchically organized stimuli to mere perceptual mechanisms of global processing. The neuroimaging studies included into this work explore mainly TPJ related perceptual functions. In the first study, neuronal properties of TPJ in Gestalt perception were investigated. Based on observations in simultanagnosia patients that are able to perceive familiar complex stimulus arrangements but fail in recognition of novel stimulus configurations, it was hypothesized that TPJ areas mainly contribute to processing of novel object arrangements. A training study was conducted where subjects had to learn the perception of complex stimulus arrangements in order to examine this hypothesis. Neuronal processes of Gestalt perception in bilateral TPJ regions were assessed pre- and posttraining. It was demonstrated that an anterior right hemispheric TPJ region responded to perceptual training with global stimuli. The results indicated fundamentally changed TPJ contributions with increasing familiarity suggesting a different strategy of the brain for processing of highly familiar object arrangements. In the second study, involvements of bilateral TPJ areas in global processing were investigated with an approach taking advantage of visual expertise. During presentation of specific chess arrangements TPJ signals of chess experts and novices were examined. As a consequence, it was possible to compare neuronal TPJ correlates for holistic perception in experts and serial perceptual strategies in novices. The result showed higher signals in bilateral TPJ areas for chess experts compared to novices…