Design Methods for Reliable Quantum Circuits

by Alexandru Paler

Institution: Universität Passau
Department: Informatik und Mathematik
Degree: PhD
Year: 2015
Record ID: 1107181
Full text PDF: https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/285


Quantum computing is an emerging technology that has the potential to change the perspectives and applications of computing in general. A wide range of applications are enabled: from faster algorithmic solutions of classically still difficult problems to theoretically more secure communication protocols. A quantum computer uses the quantum mechanical effects of particles or particle-like systems, and a major similarity between quantum and classical computers consists of both being abstracted as information processing machines. Whereas a classical computer operates on classical digital information, the quantum computer processes quantum information, which shares similarities with analog signals. One of the central differences between the two types of information is that classical information is more fault-tolerant when compared to its quantum counterpart. Faults are the result of the quantum systems being interfered by external noise, but during the last decades quantum error correction codes (QECC) were proposed as methods to reduce the effect of noise. Reliable quantum circuits are the result of designing circuits that operate directly on encoded quantum information, but the circuit’s reliability is also increased by supplemental redundancies, such as sub-circuit repetitions. Reliable quantum circuits have not been widely used, and one of the major obstacles is their vast associated resource overhead, but recent quantum computing architectures show promising scalabilities. Consequently the number of particles used for computing can be more easily increased, and that the classical control hardware (inherent for quantum computation) is also more reliable. Reliable quantum circuits haev been investigated for almost as long as general quantum computing, but their limited adoption (until recently) has not generated enough interest into their systematic design. The continuously increasing practical relevance of reliability motivates the present thesis to investigate some of the first answers to questions related to the background and the methods forming a reliable quantum circuit design stack. The specifics of quantum circuits are analysed from two perspectives: their probabilistic behaviour and their topological properties when a particular class of QECCs are used. The quantum phenomena, such as entanglement and superposition, are the computational resources used for designing quantum circuits. The discrete nature of classical information is missing for quantum information. An arbitrary quantum system can be in an infinite number of states, which are linear combinations of an exponential number of basis states. Any nontrivial linear combination of more than one basis states is called a state superposition. The effect of superpositions becomes evident when the state of the system is inferred (measured), as measurements are probabilistic with respect to their output: a nontrivial state superposition will collapse to one of the component basis states, and the measurement result is known exactly only after the…