AbstractsChemistry

New Routes Towards Nanoporous Carbon Materials for Electrochemical Energy Storage and Gas Adsorption

by Martin Oschatz




Institution: Technische Universität Dresden
Department: Fakultät Mathematik und Naturwissenschaften
Degree: PhD
Year: 2015
Record ID: 1115361
Full text PDF: http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-164113


Abstract

The chemical element carbon plays a key role in the 21st century. “The new carbon age” is associated with the global warming due to increasing carbon dioxide emissions. The latter are a major consequence of the continued combustion of fossil fuels for energy generation. However, carbon is also one key component to overcome these problems. Especially porous carbon materials are highly attractive for many environmentally relevant applications. These materials provide high specific surface area, high pore volume, thermal/chemical stability, and high electrical conductivity. They are promising candidates for the removal of carbon dioxide or other environmentally relevant gases from exhaust gas mixtures. Furthermore, porous carbons are used in electrochemical energy storage devices (e.g. batteries or electrochemical capacitors). The performance of the materials in these applications depends on their pore structure. Hence, precise control over the pore size and the pore geometry is important to achieve. Besides a high specific surface area (SSA) and a well-defined pore size, pore accessibility must be ensured because the surface must be completely available. If the porous carbons exhibit ink-bottle pores, the high surface area is useless because the guest species do not reach the pore interior. Therefore, carbon materials with hierarchical pore structure are attractive. They combine at least two different pore systems of different size which contribute with their individual advantages. While smaller pores provide large specific surface area, larger pores ensure efficient mass transport. Numerous methods for the targeted synthesis of carbide-derived carbon materials (CDCs) with hierarchical pore architectures were developed within this thesis (Figure 1). CDCs are produced by the extraction of metal- or semi-metal atoms from carbide precursors leading to the formation of a microporous carbon network with high specific surface area. PolyHIPE-CDCs with porosity on three hierarchy levels and total pore volumes as high as 8.5 cm3/g were prepared by a high internal phase emulsion technique. CO2 activation increases the SSA to values above 3100 m2/g. These materials are promising for the filtration of non-polar organic compounds from gas mixtures. CDC nanospheres with diameters below 200 nm were obtained from polycarbosilane-based miniemulsions. They show high capacitance of up to 175 F/g in symmetrical EDLCs in 1 M H2SO4 aqueous electrolyte. Besides such emulsion techniques, the hard-templating concept (also referred to as nanocasting) was presented as an efficient approach for the synthesis of CDC mesofoam powders and meso-macroporous CDC monoliths starting from silica templates and polycarbosilane precursors. As a wide range of pore sizes is approachable, the resulting materials are highly versatile in terms of application. Due to their high nanopore volume, well-defined mesopores and large SSA, they show outstanding properties as electrode materials in EDLCs or in Li-S batteries as well as high and rapid uptake in gas…