AbstractsEngineering

Thinning and turbulence in aqueous films

by Michael Winkler




Institution: Universität Potsdam
Department:
Year: 0
Record ID: 1117359
Full text PDF: https://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/5148


Abstract

This thesis covers the topic ”Thinning and Turbulence in Aqueous Films”. Experimental studies in two-dimensional systems gained an increasing amount of attention during the last decade. Thin liquid films serve as paradigms of atmospheric convection, thermal convection in the Earth’s mantle or turbulence in magnetohydrodynamics. Recent research on colloids, interfaces and nanofluids lead to advances in the developtment of micro-mixers (lab-on-a-chip devices). In this project a detailed description of a thin film experiment with focus on the particular surface forces is presented. The impact of turbulence on the thinning of liquid films which are oriented parallel to the gravitational force is studied. An experimental setup was developed which permits the capturing of thin film interference patterns under controlled surface and atmospheric conditions. The measurement setup also serves as a prototype of a mixer on the basis of thermally induced turbulence in liquid thin films with thicknesses in the nanometer range. The convection is realized by placing a cooled copper rod in the center of the film. The temperature gradient between the rod and the atmosphere results in a density gradient in the liquid film, so that different buoyancies generate turbulence. In the work at hand the thermally driven convection is characterized by a newly developed algorithm, named Cluster Imaging Velocimetry (CIV). This routine determines the flow relevant vector fields (velocity and deformation). On the basis of these insights the flow in the experiment was investigated with respect to its mixing properties. The mixing characteristics were compared to theoretical models and mixing efficiency of the flow scheme calculated. The gravitationally driven thinning of the liquid film was analyzed under the influence of turbulence. Strong shear forces lead to the generation of ultra-thin domains which consist of Newton black film. Due to the exponential expansion of the thin areas and the efficient mixing, this two-phase flow rapidly turns into the convection of only ultra-thin film. This turbulence driven transition was observed and quantified for the first time. The existence of stable convection in liquid nanofilms was proven for the first time in the context of this work. Diese Diplomarbeit behandelt das Thema ”Dünnung und Turbulenz in wässrigen Filmen”. Experimente in zweidimensionalen Systemen erfuhren in den vergangenen Jahren zunehmend an Aufmerksamkeit. Dünne Flüssigkeitsschichten dienen als Modell für atmosphärische Konvektion, thermische Konvektion im Erdmantel oder Turbulenz in der Magnetohydrodynamik. Aktuelle Forschung im Bereich der Kolloide, Grenzflächen und Nanofluidik führt zu Fortschritten in der Entwicklung von Mikromixern (”lab-on-a-chip”). In diesem Projekt wird eine detaillierte Beschreibung eines Dünnfilmexperiments mit Fokus auf die besonderen Oberflächenkräfte vorgestellt. Die Auswirkung der Turbulenz auf die Dünnung von parallel zur Gravitationskraft orientierten Flüssigkeitsschichten wurde untersucht. Es wurde ein…