AbstractsEngineering

Magnetodynamic vector hysteresis models for steel laminations of rotating electrical machines

by Emad Ali Dlala




Institution: Helsinki University of Technology; Teknillinen korkeakoulu
Department: Department of Electrical Engineering
Year: 2008
Keywords: Electrical engineering; iron loss; vector hysteresis; ferromagnetic; magnetodynamic; eddy currents; electrical steel; finite element; rotating electrical machines
Record ID: 1132952
Full text PDF: https://aaltodoc.aalto.fi/handle/123456789/3011


Abstract

This thesis focuses on the modeling and prediction of iron losses in rotating electrical machines. The aim is to develop core loss models that are reasonably accurate and efficient for the numerical electromagnetic field analysis. The iron loss components, including hysteresis, classical eddy-current, and excess losses, are determined by modeling the dynamic hysteresis loops, whereby the incorporation of the core losses into the field solution is feasible and thus the influence of the core losses on the performance of the machine is investigated. The thesis presents a magnetodynamic vector hysteresis model that produces not only an accurate, overall prediction of the iron losses, but also explicitly models the magnetization behavior and the loop shapes. The model is found to be efficient, stable, and adequate for providing accurate predictions of the magnetization curves, and hence iron losses, under alternating and rotating flux excitations. It is demonstrated that the model satisfies the rotational loss property and reproduces the shapes of the experimental loops. In addition, a more simplified, efficient, and robust version of the magnetodynamic vector hysteresis model is introduced. The thesis also aims to analyze the convergence of the fixed-point method, examine the barriers behind the slow convergence, and show how to overcome them. The analysis has proved useful and provided sound techniques for speeding up the convergence of the fixed-point method. The magnetodynamic lamination models have been integrated into a two-dimensional finite-element analysis of rotating electrical machines. The core losses of two induction motors have been analyzed and the impact of core losses on the motor characteristics has been investigated. The simulations conducted reveal that the models are relatively efficient, accurate, and suitable for the design purposes of electrical machines.