AbstractsMedical & Health Science

Familial aggregation of type 1 diabetes and diabetic nephropathy in Finland

by Valma Harjutsalo




Institution: University of Helsinki
Department: Department of Public Health; National Public Health Institute
Year: 2007
Keywords: geneettinen epidemiologia
Record ID: 1144230
Full text PDF: http://hdl.handle.net/10138/20341


Abstract

Type 1 diabetes (T1D) is a common, multifactorial disease with strong familial clustering. In Finland, the incidence of T1D among children aged 14 years or under is the highest in the world. The increase in incidence has been approximately 2.4% per year. Although most new T1D cases are sporadic the first-degree relatives are at an increased risk of developing the same disease. This study was designed to examine the familial aggregation of T1D and one of its serious complications, diabetic nephropathy (DN). More specifically the study aimed (1) to determine the concordance rates of T1D in monozygotic (MZ) and dizygotic (DZ) twins and to estimate the relative contributions of genetic and environmental factors to the variability in liability to T1D as well as to study the age at onset of diabetes in twins; (2) to obtain long-term empirical estimates of the risk of T1D among siblings of T1D patients and the factors related to this risk, especially the effect of age at onset of diabetes in the proband and the birth cohort effect; (3) to establish if DN is aggregating in a Finnish population-based cohort of families with multiple cases of T1D, and to assess its magnitude and particularly to find out whether the risk of DN in siblings is varying according to the severity of DN in the proband and/or the age at onset of T1D: (4) to assess the recurrence risk of T1D in the offspring of a Finnish population-based cohort of patients with childhood onset T1D, and to investigate potential sex-related effects in the transmission of T1D from the diabetic parents to their offspring as well as to study whether there is a temporal trend in the incidence. The study population comprised of the Finnish Young Twin Cohort (22,650 twin pairs), a population-based cohort of patients with T1D diagnosed at the age of 17 years or earlier between 1965 and 1979 (n=5,144) and all their siblings (n=10,168) and offspring (n=5,291). A polygenic, multifactorial liability model was fitted to the twin data. Kaplan-Meier analyses were used to provide the cumulative incidence for the development of T1D and DN. Cox s proportional hazards models were fitted to the data. Poisson regression analysis was used to evaluate temporal trends in incidence. Standardized incidence ratios (SIRs) between the first-degree relatives of T1D patients and background population were determined. The twin study showed that the vast majority of affected MZ twin pairs remained discordant. Pairwise concordance for T1D was 27.3% in MZ and 3.8% in DZ twins. The probandwise concordance estimates were 42.9% and 7.4%, respectively. The model with additive genetic and individual environmental effects was the best-fitting liability model to T1D, with 88% of the phenotypic variance due to genetic factors. The second paper showed that the 50-year cumulative incidence of T1D in the siblings of diabetic probands was 6.9%. A young age at diagnosis in the probands considerably increased the risk. If the proband was diagnosed at the age of 0-4, 5-9, 10-14, 15 or more, the corresponding…