AbstractsEngineering

TiO2 nanocomposite photocatalysts for water disinfection and decontamination under solar irradiation

by Lei Liu




Institution: Nanyang Technological University
Department:
Year: 2014
Keywords: DRNTU::Engineering::Environmental engineering::Water treatment
Record ID: 1385136
Full text PDF: http://hdl.handle.net/10356/59532


Abstract

A group of novel TiO2 nanocomposite photocatalysts were developed by combining TiO2 nanofibers/nanorods with Ag nanoparticles, graphene oxide (GO) sheets, and visible light photocatalyst Ag3PO4. Generally these nanocomposite photocatalysts were highly efficient for disinfection of E.coli and decontamination of organic pollutants (i.e. methylene blue, AO 7, and phenol) under solar/visible light irradiation. Depositing Ag nanoparticles on electrospun TiO2 nanofibers could achieve concurrent membrane filtration and enhanced photocatalytic disinfection/decontamination activities under solar irradiation compared with TiO2 nanofibers and P25. The synergistic effects of coulping Ag nanoparticles, TiO2 nanorods and large GO sheets resulted in further improved photocatalytic activities of the GO-TiO2-Ag nanocomposites. Introduing visible light photocatalyst Ag3PO4 to form GO-Ag3PO4 nanocomposites achieved much higher photocatalytic activities compared with Ag/TiO2 or GO-TiO2-Ag nanocomposites. The mechanisms behind each were investigated to optimize the strategy of the processes. This study is of great significance in providing opportunities r cost effectively water purification applications.