AbstractsBiology & Animal Science

Catalytic conversion of biomass-derived oils to fuels and chemicals

by John Deheer Adjaye




Institution: University of Saskatchewan
Department:
Year: 2010
Keywords: catalytic conversion; biomass; fuels; chemicals
Record ID: 1856321
Full text PDF: http://hdl.handle.net/10388/etd-03252009-110420


Abstract

Experimental and kinetic modeling studies were carried out on the conversion a wood-oil obtained from high pressure liquefaction of aspen poplar wood to liquid hydrocarbon fuels and useful chemicals in a fixed bed micro-reactor using HZSM-5 catalyst. Similar experiments were conducted using silicalite, H-mordenite, H-Y and amorphous silica-alumina catalysts. Preliminary vacuum distillation studies showed that the wood-oil was made up of volatile and non-volatile fractions. A maximum yield of 62 wt% volatiles at 200 °C, 172 Pa was obtained. The volatile fraction consisted of over 80 compounds. These compounds were comprised of acids, alcohols, aldehydes, ketones, esters, ethers, furans, phenols and some hydrocarbons. The characteristics of the oil showed that it was unstable with time, i.e., its physical properties and chemical composition changed with time probably due to the reaction of free radicals or the oxidative coupling of some of the wood-oil components. However, when the oil was mixed with tetralin, the stability improved. Upgrading studies were first conducted over inert berl saddles in the presence and absence of steam (i. e. non-catalytic treatment/blank runs). Yields of hydrocarbons were between 16 and 25 wt% of the wood-oil. High residue fractions of between 32 to 56 wt% were obtained after processing. Some portions of wood-oil formed a carbonaceous material (char or coke) when exposed to the experimental temperatures. The chars (coke) fraction increased with temperature from 4.7 to 12.5 wt% when processing with steam and 8.0 to 20.4 wt% when processing without steam. Catalytic upgrading studies were first carried out using HZSM-5 catalyst in the presence and absence of steam. The results showed that approximately 40 to 65 wt% of the oil could be converted to a hydrocarbon-rich product (i.e. desired organic liquid product (distillate). This contained about 45 to 70 wt% hydrocarbons with selectivities ranging between 0.47 to 0.88. This fraction was highly aromatic in nature and consisted mainly of benzene, toluene, xylene (BTX compounds) and other alkylated benzenes within the gasoline boiling point range. The yield and selectivities were strong functions of the process time and temperature. A comparison between the two processes, i.e. upgrading in the presence and absence of steam, showed that about 30 to 45 % reduction in coke formation and 5 to 18 wt% increase in organic distillate could be achieved when processing in the presence of steam. These changes were probably due to changes in the rates of cracking, deoxygenation, aromatization and polymerization reactions resulting from the competitive adsorption processes between steam and wood-oil molecules in addition to changes in contact time of molecules. However, the selectivity for hyqrocarbons decreased in the presence of steam. Yields of organic distillate fractions of between 72 to 93 wt% and hydrocarbon yields and selectivities of 44 to 51 wt% and 0.93 to 1.13, respectively, were obtained when wood-oil volatile fraction was upgraded over…