AbstractsComputer Science

Measurement and analysis of real-world 802.11 mesh networks

by Katrina L. (Katrina Leigh) LaCurts




Institution: MIT
Department: Electrical Engineering and Computer Science
Degree: MS
Year: 2010
Keywords: Electrical Engineering and Computer Science.
Record ID: 1887762
Full text PDF: http://hdl.handle.net/1721.1/60168


Abstract

Despite many years of work in wireless mesh networks built using 802.11 radios, the performance and behavior of these networks in the wild is not well understood. This is primarily due to a lack of access to data from a wide range of these networks; most researchers have access to only one or two testbeds at any time. In recent years, however, these networks have been deployed commercially and have real users who use the networks in a wide range of conditions. This thesis analyzes data collected from 1407 access points in 110 different commercially deployed Meraki wireless mesh networks, constituting perhaps the largest study of real-world 802.11 mesh networks to date. After analyzing a 24-hour snapshot of data collected from these networks, we answer questions from a variety of active research topics, including the accuracy of SNR-based bit rate adaptation, the impact of opportunistic routing, and the prevalence of hidden terminals. The size and diversity of our data set allow us to analyze claims previously only made in small-scale studies. In particular, we find that the SNR of a link is a good indicator of the optimal bit rate for that link, but that one could not make an SNR-to-bit-rate look-up table that was accurate for an entire network. We also find that an ideal opportunistic routing protocol provides little to no benefit on most paths, and that "hidden triples"-network topologies that can lead to hidden terminals-are more common than suggested in previous work, and increase in proportion as the bit rate increases.