Theoretical evaluation, analysis and design of surface-mounted waveguide (SMW) components for on-substrate integrated microwave applications

by Jan Schorer

Institution: University of Victoria
Year: 2016
Keywords: wave guides
Posted: 02/05/2017
Record ID: 2067679
Full text PDF: http://hdl.handle.net/1828/7098


This dissertation presents the research on a novel combination of well proven concepts for passive electromagnetic wave-guiding components. The goal of this work is to overcome and minimize losses occurring in frequency-selective structures. The work aims to contribute to an improvement in the application of conventional and Substrate Integrated Waveguide (SIW). It is proposed to mount conventional waveguide structures on the surface of printed circuit boards containing substrate integrated waveguides. The crossover technology is referred to as Surface Mounted Waveguide (SMW). Theoretical investigations are performed, proving the validity and superiority of the proposed structure focusing on the elimination of losses, while maintaining low space consumption and printed circuit board technology compatible manufacturing processes. Additionally, a mode matching technique is developed and successfully applied to prototype such components. The validation of this method reveals superior computational speed when compared to commercial available electromagnetic field solvers. The proposed structures are validated by measurements of several prototypes, including coupled SMW resonator filters, combined SMW and SIW resonator filters, a SMW triple-layer diplexer and single individual SMW resonator filters. The experimental verification shows good agreement between theory and measurements. Moreover, the comparison to other technologies proves the superiority of the proposed structures. Advisors/Committee Members: Bornemann, Jens (supervisor).