Control of Synchrotron X-ray Emission from Laser Wakefield Accelerators

by Zhen Zhao

Institution: University of Michigan
Year: 2016
Keywords: Laser Wakefield Acceleration; Synchrotron X-ray Emission; Betatron X-ray Emission; Electron Generation and Acceleration; X-ray Generation; Engineering (General); Nuclear Engineering and Radiological Sciences; Engineering
Posted: 02/05/2017
Record ID: 2088208
Full text PDF: http://hdl.handle.net/2027.42/133453


When a short-pulse, high-intensity laser irradiates a gas target, plasma is produced and electrons are accelerated to high energies due to the electric field of the laser. Irradiation of the gas produces plasma waves capable of accelerating electrons that emit high energy X-rays in the laser wakefield acceleration regime. The properties of the radiation are linked to those of the electron beam and the laser pulse parameters. Thus, efficient X-ray production requires efficient methods of injecting electrons into the wakefield and accelerating them afterwards. This thesis describes experimental and numerical work aimed at optimizing the electron generation process as well as the resulting X-ray emission using low density plasmas. Experiments were primarily carried out using the petawatt-class High Energy Repetitive CUOS LasEr System (HERCULES) at the University of Michigan. Advisors/Committee Members: Krushelnick, Karl M (committee member), Galvanauskas, Almantas (committee member), Maksimchuk, Anatoly M (committee member), Nees, John A (committee member), Thomas, Alexander George Roy (committee member).