AbstractsAstronomy & Space Science

Contributions to GNSS-R earth remote sensing from nano-satellites

by true




Institution: TDX
Department:
Year: 2016
Posted: 02/05/2017
Record ID: 2114237
Full text PDF: http://hdl.handle.net/10803/385216


Abstract

Global Navigation Satellite Systems Reflectometry (GNSS-R) is a multi-static radar using navigation signals as signals of opportunity. It provides wide-swath and improved spatio-temporal sampling over current space-borne missions. The lack of experimental datasets from space covering signals from multiple constellations (GPS, GLONASS, Galileo, Beidou) at dual-band (L1 and L2) and dual-polarization (Right Hand Left Hand Circular Polarization: RHCP and LHCP), over the ocean, land and cryosphere remains a bottleneck to further develop these techniques. 3Cat-2 is a 6 units (3 x 2 elementary blocks of 10 x 10 x 10 cm3) CubeSat mission ayming to explore fundamentals issues towards an improvement in the understanding of the bistatic scattering properties of different targets. Since geolocalization of specific reflections points is determined by the geometry only, a moderate pointing accuracy is still required to correct for the antena pattern in scatterometry measurements. 3Cat-2 launch is foreseen for the first quarter 2016 into a Sun-Synchronous orbit of 510 km height using a Long March II D rocket. This Ph.D. Thesis represents the main contributions to the development of the 3Cat-2 GNSS-R Earth observation mission (6U CubeSat) including a novel type of GNSS-R technique: the reconstructed one. The desing, development of the platform, and a number of ground-based, airborne and stratospheric balloon experiments to validate the technique and to optimize the instrument. In particular, the main contributions of this Ph.D. thesis are: 1) A novel dual-band Global Navigation Satellite Systems Reflectometer that uses the P(Y) and C/A signals scattered over the sea surface to perform highly precise altimetric measurements (PYCARO). 2) The first proof-of-concept of PYCARO was performed during two different ground-based field experiments over a dam and over the sea under different surface roughness conditions. 3) The scattering of GNSS signals over a water surface has been studied when the receiver is at low height, as for GNSS-R coastal altimetry applications. The precise determination of the local sea level and wave state from the coast can provide useful altimetry and wave information as 'dry' tide and wave gauges. In order to test this concept an experiment has been conducted at the Canal d'Investigació i Experimentació Marítima (CIEM) wave channel for two synthetic 'sea' states. 4) Two ESA-sponsored airborne experiments were perfomed to test the precision and the relative accuracy of the conventional GNSS-R. 5) The empirical results of a GNSS-R experiment on-board the ESA-sponsored BAXUS 17 stratospheric balloon campaign performed North of Sweden over boreal forests showed that the power of the reflected signals is nearly independent of the platform height for a high coherent integration time. 6) An improved version of the PYCARO payload was tested in Octover 2014 for the second time during the ESA-sposored BEXUS-19,. This work achieved the first ever dual-frequency, multi-constellation GNSS-R observations over boreal forests…