Palynological investigation of Holocene climatic and oceanic variability in South Africa and the southern Benguela upwelling system

by Xueqin Zhao

Institution: Universitt Bremen
Year: 2017
Posted: 02/01/2018
Record ID: 2222117
Full text PDF: http://elib.suub.uni-bremen.de/edocs/00105891-1.pdf


South Africa is very sensitive to climate change, because it is located between two atmospheric systems (subtropical and warm-temperate systems) and two oceanic systems (Benguela Current and Agulhas Current). Presently, the seasonal changes of atmospheric and oceanic systems induce a pronounced rainfall seasonality comprised of three different rainfall zones (summer rainfall zone, SRZ; year-round rainfall zone, YRZ and winter rainfall zone, WRZ) over South Africa. However, the seasonality development during the Holocene in South Africa is poorly understood and the driving forces of the climate change are debated. Therefore, this study aims to provide a detailed reconstruction of Holocene climate and vegetation variability of South Africa, palaeoceanographic changes in the southern Benguela upwelling system as well as the land-ocean linkages. In the first part of this thesis, the spatial distribution of pollen in marine surface sediments was investigated based on a transect of 12 marine surface sediment samples retrieved from north (29.12AAAAAAAdegreeS) to south (32.50AAAAAAAdegreeS) of the Namaqualand mudbelt off western South Africa. The distinct pollen spectra reflect vegetation communities on the adjacent continent with a marked north-south gradient of pollen concentration. The distribution of specific pollen taxa suggests that the Orange River is a major contribution of pollen to the northern mudbelt declining southwards. Whereas the seasonal inputs of pollen from offshore berg winds and local ephemeral Namaqualand rivers have a great contribution to the central mudbelt. In the southern mudbelt, the dominated Fynbos elements indicate a main pollen source from the Fynbos vegetation in the southwestern Cape of South Africa. The approach in the first part of this thesis allows for climate reconstructions of the SRZ and WRZ using specific pollen taxa from a single marine archive. Therefore, in the second part of this thesis, the Holocene vegetation and climate variability in South Africa was reconstructed using pollen and microcharcoal records of two marine core sites GeoB8331 and GeoB8323 from the Namaqualand mudbelt offshore of the west coast of South Africa covering the last 9900 and 2200 years, respectively. Three different climate periods were described with apparently contrasting climate developments between the SRZ and WRZ: during the early Holocene (9900-7800 cal. yr BP), a minimum of grass pollen suggests lower summer rainfall in the SRZ, while relatively wet conditions in the WRZ were indicated by the initial presence of Renosterveld vegetation. During the middle Holocene (7800-2400 cal. yr BP), a maximum in grass pollen suggests an expansion of rather moist savanna/grassland. This is probably associated with higher summer rainfall in the SRZ resulting from increased austral summer insolation. In the WRZ, a decline of Fynbos vegetation accompanied by an expansion of Succulent Karoo vegetation indicate warmer and drier conditions, which possibly suggests a southward shift of the southern westerlies.Advisors/Committee Members: Wefer, Gerold (advisor), Wefer, Gerold (referee), Behling, Hermann (referee).