Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Thin film technology for optoelectronics and their thermal management
by Zhiheng Quan
Institution: | University College Cork |
---|---|
Department: | |
Degree: | |
Year: | 2017 |
Keywords: | Thin film optoelectronics; Laser lift-off; III-Nitride; Free-standing LEDs; Thin film laser diode |
Posted: | 2/1/2018 12:00:00 AM |
Record ID: | 2192754 |
Full text PDF: | http://hdl.handle.net/10468/4053 |
Thin-film semiconductor optoelectronics are important for applications from optical communication, solid-state lighting, and wearable electronics to biomedical sensors. It is now possible to separate the micrometer-thick device layers from their native substrates and transfer them onto new platforms to optimize system performance and integration. The understanding of thermal management for such devices is very important in order to control the junction temperature effectively. Here, the laser-lift-off (LLO) technique was theoretically and experimentally studied. The temperature distribution at the III-nitride/sapphire interface induced by absorption of 248-nm KrF excimer energetic laser pulses was simulated to verify the experimental results. A 1.5-m-thick n-type Al0.6Ga0.4N membrane was separated from a c-plane sapphire substrate and then bonded to a Si substrate. The electrical behaviour of Ti/Al/Ti/Au contacts on the N-polar n-Al0.6Ga0.4N membrane was characterized. Furthermore, free-standing semipolar InGaN/GaN light-emitting diodes (LEDs) emitting at 445 nm were first realized by separation from patterned r-plane sapphire substrate using LLO. The LEDs showed a turn-on voltage of 3.6 V and output power of 0.87 mW at 20 mA. Electroluminescence measurements showed stronger emission intensity along the inclined c-direction. The -3 dB bandwidth of the LEDs is in excess of 150 MHz at 20 mA and a back-to-back data transmission rate at 300 Mbps is demonstrated. This indicates that the LEDs can be used for high bandwidth visible light communications. For thermal management of thin-film optoelectronics, a GaAs based laser diode (LD) was investigated. The 2-dimensional temperature distribution of the transfer-bonded LD was simulated; where the power dissipation, the thermal resistance of different cavity lengths and configurations were investigated. This can be utilized to optimize the device design and the choice of carrier substrate for efficient thermal management of thin-film optoelectronics.Advisors/Committee Members: Parbrook, Peter James, Corbett, Brian.
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
![]() |
Electric Cooperative Managers' Strategies to Enhan...
|
![]() |
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
![]() |
Bullied!
Coping with Workplace Bullying
|
![]() |
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
![]() |
The Census of Warm Debris Disks in the Solar Neigh...
|
![]() |
Performance, Managerial Skill, and Factor Exposure...
|
![]() |
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
![]() |
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
![]() |
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
![]() |
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|