AbstractsEngineering

Study of Geometric Effects on Local Corrosion Rates for LBE Loop

by Chao Wu




Institution: University of Nevada – Las Vegas
Department: Mechanical Engineering
Degree: MSME
Year: 2003
Keywords: Corrosion and anti-corrosives; Eutectic alloys; Harry Reid Center; Lead-bismuth alloys; Nuclear reactors — Cooling; Nuclear reactors — Materials — Testing; Engineering Science and Materials; Mechanical Engineering; Mechanics of Materials; Nuclear Engineering
Record ID: 1740466
Full text PDF: http://digitalscholarship.unlv.edu/thesesdissertations/1497


Abstract

Corrosion is an extremely important issue in nuclear cooling system applications. Many scientific and engineering efforts have been contributed to the research of finding an ideal material, which has resistance to corrosive Lead Bismuth Eutectic (LBE). A Delta Loop was designed and constructed in Los Alamos National Lab (LANL) to obtain the experimental data. This loop is a multi-section closed system that differs in diameter from one part to another. As a result, an intensive study on the geometry effect is hence necessary and valuable. In this thesis, this problem was simulated by commercial software STAR-CD. Results provide a good prediction where the highest corrosion rate might occur and how geometry will affect the local corrosion phenomenon. Simple study on reactive flow was carried out by using STAR-CD + CHEMKIN, which is designed for solving reactions both in flow and on surface. In addition, a self-developed code using finite difference method was employed to reveal how mass transfer is affected by geometry and flow. Parametric study on several factors was carried out.