AbstractsBiology & Animal Science

Effect of pollen diet and honey bee (apis mellifera l.) primer pheromones on worker bee food producing glands

by Lizette Alice Peters

Institution: Texas A&M University
Year: 2009
Keywords: honey bee
Record ID: 1854467
Full text PDF: http://hdl.handle.net/1969.1/ETD-TAMU-3167


This thesis examines three factors that may influence the change in protein content and size of the brood food glands in honey bees. Effects on the mandibular gland, involved in the production of brood food and in royal jelly, have not been examined in relation to primer pheromones while effects on the hypopharyngeal glands, also involved in the production of brood food, have not been examined in relation to queen mandibular pheromone. This thesis provides preliminary insight into how these pheromones affect the extractable protein content of brood food glands. The first study in this thesis assessed the effects of brood pheromone (BP), queen mandibular pheromone (QMP), and pollen presence on the protein content of hypopharyngeal and mandibular glands of the honey bee. In this study, newly emerged bees were caged for 12 days in one of eight treatments: Queenless state: 1) control (no pollen + no pheromone), 2) pollen, 3) BP, 4) BP + pollen; Queenright state: 1) QMP, 2) QMP + pollen, 3) BP + QMP, 4) BP + QMP + pollen. This study indicated that regardless of pheromone treatment, the most influential factor on gland protein content and size was pollen. The second experiment examined effects of varying pollen dilution on hypopharyngeal and mandibular gland protein content, bee mass, and lipid content of the honey bee. In this experiment, newly emerged bees were caged for 7 days and fed one of five treatments: pollen, 1:1 pollen: cellulose (vol:vol), 1:2 pollen: cellulose (vol:vol); 1:3 pollen: cellulose (vol:vol), and cellulose. This study indicated that bees on the pollen diet were significantly greater than all other diluted diets in measurements of hypopharyngeal gland protein content, lipid content, and mass with significantly less consumption. However, mandibular gland protein content of bees on the pollen diet was significantly greater only from pure cellulose.