AbstractsAstronomy & Space Science

Hierarchical decomposition of multi-agent Markov decision processes with application to health aware planning

by Yu Fan Chen




Institution: MIT
Department: Department of Aeronautics and Astronautics
Year: 2014
Keywords: Aeronautics and Astronautics.
Record ID: 2030451
Full text PDF: http://hdl.handle.net/1721.1/93795


Abstract

Multi-agent robotic systems have attracted the interests of both researchers and practitioners because they provide more capabilities and afford greater flexibility than single-agent systems. Coordination of individual agents within large teams is often challenging because of the combinatorial nature of such problems. In particular, the number of possible joint configurations is the product of that of every agent. Further, real world applications often contain various sources of uncertainties. This thesis investigates techniques to address the scalability issue of multi-agent planning under uncertainties. This thesis develops a novel hierarchical decomposition approach (HD-MMDP) for solving Multi-agent Markov Decision Processes (MMDPs), which is a natural framework for formulating stochastic sequential decision-making problems. In particular, the HD-MMDP algorithm builds a decomposition structure by exploiting coupling relationships in the reward function. A number of smaller subproblems are formed and are solved individually. The planning spaces of each subproblem are much smaller than that of the original problem, which improves the computational efficiency, and the solutions to the subproblems can be combined to form a solution (policy) to the original problem. The HD-MMDP algorithm is applied on a ten agent persistent search and track (PST) mission and shows more than 35% improvement over an existing algorithm developed specifically for this domain. This thesis also contributes to the development of the software infrastructure that enables hardware experiments involving multiple robots. In particular, the thesis presents a novel optimization based multi-agent path planning algorithm, which was tested in simulation and hardware (quadrotor) experiment. The HD-MMDP algorithm is also used to solve a multi-agent intruder monitoring mission implemented using real robots.