Capacity analysis in different systems exploiting mobility of VANETs

by Miao Wang

Institution: University of Waterloo
Year: 2015
Keywords: capacity, mobility, VANETs, Intelligent Transportation System, smart grid
Record ID: 2057868
Full text PDF: http://hdl.handle.net/10012/9249


Improving road safety and traffic efficiency has been a long-term endeavor for not only government but also automobile industry and academia. After the U.S. Federal Communication Commission (FCC) allocated a 75 MHz spectrum at 5.9 GHz for vehicular communications, the vehicular ad hoc network (VANET), as an instantiation of the mobile ad hoc network (MANET) with much higher node mobility, opens a new door to combat the road fatalities. In VANETs, a variety of applications ranging from safety related (e.g. emergency report, collision warning) to non-safety-related (e.g. infotainment and entertainment) can be enabled by vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications. However, the flourish of VANET still hinges fully understanding and managing the challenges that the public concerns, for example, capacity and connectivity issues due to the high mobility of vehicles. In this thesis, we investigate how vehicle mobility can impact the performance in three important VANET-involved systems, i.e., pure VANET, VANET-enhanced intelligent transportation systems (ITS), and fast electric vehicle (EV) charging systems. First, in pure VANET, our work shows that the network data-traffic can be balanced and the network throughput can be improved with the help of the vehicle mobility differentiation. Furthermore, leveraging vehicular communications of VANETs, the mobility-aware real-time path planning can be designed to smooth the vehicle traffic in an ITS, through which the traffic congestion in urban scenarios can be effectively relieved. In addition, with the consideration of the range anxiety caused by mobility, coordinated charging can provide efficient charging plans for electric vehicles (EVs) to improve the overall energy utilization while preventing an electric power system from overloading. To this end, we try to answer the following questions: Q1) How to utilize mobility characteristics of vehicles to derive the achievable asymptotic throughput capacity in pure VANETs? Q2) How to design path planning for mobile vehicles to maximize spatial utility based on mobility differentiation, in order to approach vehicle-traffic capacity in a VANET-enhanced ITS? Q3) How to develop the charging strategies based on mobility of electric vehicles to improve the electricity utility, in order to approach load capacities of charging stations in VANET-enhanced smart grid? To achieve the first objective, we consider the unique features of VANETs and derive the scaling law of VANETs throughput capacity in the data uploading scenario. We show that in both free-space propagation and non-free-space propagation environments, the achievable throughput capacity of individual vehicle scales as $\Theta (\frac{1}{{\log n}}) with $n$ denoting the population of a set of homogenous vehicles in the network. To achieve the second objective, we first establish a VANET-enhanced ITS, which incorporates VANETs to enable real-time communications among vehicles, road side units (RSUs), and a vehicle-traffic server in an…