AbstractsMathematics

Probabilistic Inference in Piecewise Graphical Models

by Afshar Hadi Mohasel




Institution: Australian National University
Department:
Year: 2016
Keywords: Piecewise; Graphical models; probabilistic inference; MCMC; sampling
Posted: 02/05/2017
Record ID: 2065719
Full text PDF: http://hdl.handle.net/1885/107386


Abstract

In many applications of probabilistic inference the models contain piecewise densities that are differentiable except at partition boundaries. For instance, (1) some models may intrinsically have finite support, being constrained to some regions; (2) arbitrary density functions may be approximated by mixtures of piecewise functions such as piecewise polynomials or piecewise exponentials; (3) distributions derived from other distributions (via random variable transformations) may be highly piecewise; (4) in applications of Bayesian inference such as Bayesian discrete classification and preference learning, the likelihood functions may be piecewise; (5) context-specific conditional probability density functions (tree-CPDs) are intrinsically piecewise; (6) influence diagrams (generalizations of Bayesian networks in which along with probabilistic inference, decision making problems are modeled) are in many applications piecewise; (7) in probabilistic programming, conditional statements lead to piecewise models. As we will show, exact inference on piecewise models is not often scalable (if applicable) and the performance of the existing approximate inference techniques on such models is usually quite poor. This thesis fills this gap by presenting scalable and accurate algorithms for inference in piecewise probabilistic graphical models. Our first contribution is to present a variation of Gibbs sampling algorithm that achieves an exponential sampling speedup on a large class of models (including Bayesian models with piecewise likelihood functions). As a second contribution, we show that for a large range of models, the time-consuming Gibbs sampling computations that are traditionally carried out per sample, can be computed symbolically, once and prior to the sampling process. Among many potential applications, the resulting symbolic Gibbs sampler can be used for fully automated reasoning in the presence of deterministic constraints among random variables. As a third contribution, we are motivated by the behavior of Hamiltonian dynamics in optics —in particular, the reflection and refraction of light on the refractive surfaces— to present a new Hamiltonian Monte Carlo method that demonstrates a significantly improved performance on piecewise models. Hopefully, the present work represents a step towards scalable and accurate inference in an important class of probabilistic models that has largely been overlooked in the literature.