AbstractsGeography &GIS

An analysis of turbulent sensible heat fluxes within a heterogeneous black spruce boreal forest in Alaska

by Derek P Starkenburg




Institution: University of Alaska – Fairbanks
Department:
Year: 2015
Posted: 02/05/2017
Record ID: 2129799
Full text PDF: http://hdl.handle.net/11122/5759


Abstract

Turbulent sensible heat fluxes within the heterogeneous canopy of a black spruce boreal forest in Interior Alaska are evaluated at three different scales in order to assess their spatial variability, and to determine the feasibility of upscaling locally measured flux values to the landscape scale for modeling applications and climate studies. The first evaluation is performed locally at a single micrometeorological tower in an area of the boreal forest with a mean canopy height of 4.7 m. The data were taken across winter, spring and summer of 2012 from two sonic anemometers, one below the canopy at 3 m above ground, and one above the canopy at 12 m above ground. A multiresolution analysis is used to isolate coherent structures from the turbulent temperature time series at both instruments. When mean global statistics of coherent structures are analyzed at the two levels independently, results show an average of 8 structures per period, a mean duration of 85 s, and a mean sensible heat flux contribution of 48%. A spectral version of the Stokes parameters is applied to the turbulent horizontal wind components to show that 31% of the coherent turbulent structures detected at 12 m, and 13% at 3 m, may be complicated by canopy waves due to the prevalence of stable flows at this high latitude location. A most remarkable finding is that less than 25% of the coherent structures detected at these two heights occur synchronously, which speaks robustly to the lack of flow interaction within only 9 vertical meters of the forest, and to the complexity of the vertical aggregation of sensible heat therein. The second evaluation quantifies differences in turbulent sensible heat fluxes horizontally between two micrometeorological towers 600 m apart, one in a denser canopy (DC) and the other in a sparser canopy (SC), but under approximately similar atmospheric boundary layer conditions. Results show that SC is ~ 3°C cooler and more stably stratified than DC during nighttime. This suggests that changes in the height and density of the canopy impact local temperature and stability regimes. Most importantly, the sensible heat flux at DC is greater during midday periods, with that difference exceeding 30% of the measured flux and over 30 W m⁻² in magnitude more than 60% of the time. This difference is the result of higher mechanical mixing due to the increased density of roughness elements at DC. Furthermore, the vertical distribution of turbulent heat fluxes verifies a maximum above the canopy crown when compared with the levels below and well above the canopy. These spatial variations of sensible heat flux result from the complex scale aggregation of energy fluxes over a heterogeneous canopy, and suggest that locally measured fluxes will likely differ from large-scale area averaged values. The third evaluation compares locally measured sensible heat fluxes from a sonic anemometer atop a 24 m micrometeorological tower to those derived from a large aperture scintillometer (LAS) whose beam is centered near the tower at an average height of… Advisors/Committee Members: Kane, Douglas L. (committee).