Abstracts Engineering

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

A Preliminary Study Of Fields In Split-Electrode Ion Traps

by Hrishikesh Shashikant Sonalikar

Institution: Indian Institute of Science
Department:
Degree:
Year: 2011
Keywords: Electrode Ion Traps; Rectilinear Ion Trap (RIT); Cylindrical Ion Trap (CIT); Split-electrode Geometries; Mass Spectrometer; Split-electrode Ion Traps; Paul Trap; Linear Ion Trap (LIT); Instrumentation
Posted:
Record ID: 1193597
Full text PDF: http://hdl.handle.net/2005/2373


Abstract

Ion traps used in mass spectrometers are of two classes. One class consists of traps having three electrode geometries which have rotational symmetry about central axis. They are called axially symmetric ion traps. Paul trap, Cylindrical Ion Trap(CIT) are examples in this class. Other class of traps contain 2D electric field inside them which has same profile along the central axis due to translational symmetry. Linear Ion Trap(LIT) and Rectilinear Ion Trap(RIT) are examples in this class. In the ideal hyperbolic geometries of Paul trap and LIT, electric field is a perfectly linear function of distance from the center of the trap. But when these ideal geometries are simplified in to simpler geometries of the CIT and the RIT for ease in machining, linearity of field, which is a specialty of Paul trap and LIT is lost. In this thesis, an effort is made to optimize the field within the traps by using split electrodes. The ring electrode of the CIT and both pairs of electrodes in the RIT are divided into more number of parts. Suitable voltages are applied on these parts to improve the linearity of the field. This thesis contains six chapters. Chapter 1 contains a background information about mass spectrometry. Chapter 2 discusses the Boundary Element Method (BEM) used to calculate charge distribution and Nelder-Mead method used for optimization. It also shows the calculation of multipoles. In Chapter 3, two new geometries namely split-electrode RIT and split-electrode CIT are considered with the objective of improving the linearity of electric field inside them. It is shown here that by applying certain external potential on various parts of split electrodes of these geometries, it is possible to improve the linearity of electric field inside them. In Chapter 4, capacitor models of new geometries proposed in chapter 3 are discussed. The use of external capacitors as a replacement to external power supply is also discussed in this chapter. InChapter5, study similar to that ofChapter3is carried out by splitting the geometries in more number of parts. The possibility of improved field profile is investigated by applying full potential to some of these parts and keeping other parts at ground potential. In Chapter 6, concluding remarks are discussed.

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Predicting the Admission Decision of a Participant...
by Yigit Ozsert, Gozde
   
Book cover thumbnail image
Development of New Models Using Machine Learning M...
by Akgol, Derman
   
Book cover thumbnail image
The Adaptation Process of a Resettled Community to... A Study of the Nubian Experience in Egypt
by Fahmi, Wael Salah
   
Book cover thumbnail image
Development of an Artificial Intelligence System f...
by Chand, Praneel
   
Book cover thumbnail image
Theoretical and Experimental Analysis of Dissipati...
by Latour, Massimo
   
Book cover thumbnail image
Optical Fiber Sensors for Residential Environments
by García-Olcina, Raimundo
   
Book cover thumbnail image
Calibration of Deterministic Parameters Reassessment of Offshore Platforms in the Arabian ...
by Zaghloul, Hassan
   
Book cover thumbnail image
How Passion Relates to Performance A Study of Consultant Civil Engineers
by Cadieux, Trevor J.