Abstracts Computer Science

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Peptide Retention Time Prediction using Artificial Neural Networks; Peptid retentionstids prediktering med artificiella neuronnät

by Sara Väljamets

Institution: KTH Royal Institute of Technology
Department:
Degree:
Year: 2016
Keywords: Natural Sciences; Mathematics; Probability Theory and Statistics; Naturvetenskap; Matematik; Sannolikhetsteori och statistik; Teknologie masterexamen - Tillämpad matematik och beräkningsmatematik; Master of Science - Applied and Computational Mathem
Posted: 2/5/2017
Record ID: 2093530
Full text PDF: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190995


Abstract

This thesis describes the development and evaluation of an artificial neural network, trained to predict the chromatographic retention times of peptides, based on their amino acid sequence. The purpose of accurately predicting retention times is to increase the number of protein identifications in shotgun proteomics and to improve targeted mass spectrometry experiment. The model presented in this thesis is a branched convolutional neural network (CNN) consisting of two convolutional layers, followed by three fully connected layers, all with leaky rectifier as the activation function. Each amino acid sequence is represented by a 20-by-20 matrix X, with each row corresponding to a certain amino acid and the columns representing the position of the amino acid in the peptide. This model achieves a RMSE corresponding to 3.8% of the total running time of the liquid chromatography and a 95 % confidence interval proportional to 14% of the running time, when trained on 20 000 unique peptides from a yeast sample. The CNN predicts retention times slightly more accurately than the software ELUDE when trained on a larger dataset, yet ELUDE performs better on smaller datasets. The CNN does however have a considerable shorter training time.  ; Det här examensarbetet beskriver utveckningen och utvärderingen av ett artificiellt neuronnät som har tränats för att prediktera kromotografisk retentionstid för peptider baserat på dess aminosyrasekvens. Syftet med att prediktera retentionstider är  att kunna identifiera fler peptider i ”shotgun” proteomik experiment och att förbättra riktade masspektrometri experiment. Den slutgiltiga modellen i detta arbete är ett konvolutions neuronnät (CNN) bestående av två konvolutions lager följt av tre lager med fullt kopplade neuroner, alla med ’leaky rectifier’ som aktiveringsfunktion. Varje aminosyrasekvens representeras av en 20x25-matris X, där varje rad representerar en specifik aminosyra och kolumnerna beskriver aminosyrans position i peptiden. Den här modellen uppnår ett kvadratiskt medelfel motsvarande 3.8% av körtiden för vätskekromatografin och ett 95 % konfidensinterval motsvarande 14% av körtiden, när CNN modellen tränas på 20 000 unika peptides från ett jästprov. CNN modellen presterar marginellt bättre än mjukvaran ELUDE när de är tränade på ett stort dataset, men för begränsade dataset så presenterar ELUDE bättre. CNN modellen tränar dock avsevärt mycket snabbare.

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Prediction of Upper Body Power of Cross-Country Sk...
by Ozciloglu, Mustafa Mikail
   
Book cover thumbnail image
Bitcoins Mining, Transaction, Security Challenges and Futur...
by Zahid, Muhammad Aslam
   
Book cover thumbnail image
Applying User-Centered Interface Design Methods to...
by Mburu, Lucy Waruguru
   
Book cover thumbnail image
Head-Order Techniques and Other Pragmatics of Lamb...
by Troullinos, Nikos B.
   
Book cover thumbnail image
Visualization of Interface Metaphor for Software An Engineering Approach
by Katre, Dinesh S.
   
Book cover thumbnail image
Indoor Wireless Metering Networks A Collection of Algorithms Enabling Low Power/Low ...
by Altan, Nicola
   
Book cover thumbnail image
Automated Generation of Geometrically-Precise and ...
by Mekni, Mehdi
   
Book cover thumbnail image
A Study on the Tone-Reservation Technique for Peak...
by Butt, Umer Ijaz