Abstracts Earth and Environmental Sciences

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Geochemical and Microbiological Characterization of the Historic Waste Rock Piles at the Detour Lake Gold Mine

by Brayden McNeill

Institution: University of Waterloo
Year: 2016
Keywords: waste rock; sulfide oxidation; acid rock drainage; acid mine drainage; mine waste; acid rock drainage microbiology
Posted: 02/05/2017
Record ID: 2117677
Full text PDF: http://hdl.handle.net/10012/10861


Abstract

Four of the historic waste rock stockpiles (WRS1-#4) at the Detour Lake mine site were studied to determine the potential for generation of acid rock drainage (ARD). The stockpiles were constructed during the original mine operations (1983 - 1999) and were covered with 1 - 1.5 m of local overburden in 2000 to provide a reclamation cover. Waste rock was composed primarily of plagioclase, horneblende, quartz and clinochlore, with small amounts of biotite. The principal sulfide minerals identified were pyrite and pyrrhotite, with small amounts of chalcopyrite and covellite. Measurements of sulfur content ranged from 0 - 2.2 wt. %, whereas the carbon content ranged from 0 - 2.5 wt. %. The neutralization potential ratios (NPR) of WRS#1 and WRS#2 ranged from 0 - 61.1 with an average of 1.6 and 0.7 in profile excavation samples. Over 50 % of samples from WRS#1 and WRS#2 were potential acid generating (PAG). WRS#3 and WRS#4 were slightly less sulfidic resulting in average NPR of 43 and 10, respectively. None of the samples from WRS#3 were PAG, and 45 % of WRS#4 samples were PAG. The hydrology of the piles is typical of waste rock piles, with a large unsaturated zone. The water tables at WRS#3 and WRS#4 are approximately 16 and 22 mBGS, respectively. The waste rock is usually near residual saturation (5 vol. %), but the passage of wetting fronts commonly increased moisture content to near matrix saturation (~25 vol. %). The cover material retains more moisture than the waste rock, and usually 10 - 20 vol. %. Thermal profiles indicate that both stockpiles remain > 0 ˚C throughout the year, except within the cover. Seasonal fluctuations in temperature are dampened and delayed with greater depth in the stockpile, except near the edge of WRS#4 where the cover was damaged suggesting the cover plays a role in regulating the temperature of the stockpiles. Air-permability testing of the cover material and waste rock indicates that the cover material impedes advective gas and heat flow. Waste rock at WRS#3 and WRS#4 had air-permeability coefficients of 10-9 - 10-10 m2, whereas the cover material had air-permeability coefficients of approximately 10-11 m2 indicating that air flow through the cover is primarily by diffusion. This observation is in agreement with pore-gas trends at WRS#3 which show O2 depletion and CO2 enrichment with depth. Pore gas at WRS#4 is at atmospheric concentrations throughout, since the destruction of the cover material has removed the barrier to advective gas flow. The results of pore-gas monitoring indicate that the installation of a simple, unengineered cover made from local material may be a cost-effective tool in the management of sulfide oxidation and potential ARD generation at this site. Pore-water quality at WRS#3 and WRS#4 is characterized as neutral mine drainage, and compares favourably to other neutral mine drainage sites. The pore-wate throughout WRS#3 and WRS#4 is neutral pH. Concentrations of SO42- between 200 and 1500 mg/L are caused by sulfide oxidation. Circumneutral pH and depletion…

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Scientific Approach Principle for New Resilient Co... Revitalizing Revere Beach, MA - A Case Study for F...
by Kianous, Anahita
   
Book cover thumbnail image
Growth and Productivity of Winter Maize (Zea mays ...
by Shrestha, Jiban
   
Book cover thumbnail image
Hydrological Forecasting with Radar and the Probab...
by Adediran, Gbotemi Abraham
   
Book cover thumbnail image
Agricultural Innovation in Rural India The Paradox of Farmer Nonadoption in Bajwada, Madh...
by Malpani, Natasha
   
Book cover thumbnail image
The Parameters Limiting the Effectiveness of Cumul...
by Taylor, Duncan
   
Book cover thumbnail image
Subsurface Evaluation of Source Rock and Hydrocarb...
by Iheanacho, Ugochukwu Princewill
   
Book cover thumbnail image
Structural and Seismic Facies Interpretation of Fa...
by Olowoyo, Kehinde Oluwatoyin
   
Book cover thumbnail image
Effect of Temperature and Impurities on Surface Te...
by Udeagbara, Stephen Gekwu