Abstracts Geography

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Characterizing Spatial and Temporal Variability of Snow Water Equivalent Using Pressure Sensors

by Benjamin D Trustman

Institution: University of Nevada, Reno
Year: 2016
Keywords: Hydrologic sciences; Environmental studies; Environmental science
Posted: 02/05/2017
Record ID: 2121548
Full text PDF: http://pqdtopen.proquest.com/#viewpdf?dispub=10126128


Abstract

The goal of this study is to characterize spatial variability of snow water equivalent (SWE) at the meter scale. The study includes measurement of SWE with a new pressure sensor and use of meteorological sensor data to investigate physical properties within the snowpack that can affect sensor measurement. The new sensor, which can continuously measure a load equivalent to up to 5.5 meters of snow, is designed to be smaller and less expensive (< 1,500) than traditional pressure sensors (> 10,000). Manual snow cores and detailed snow pit analyses were performed to assess accuracy of the sensors and identify physical properties that may be related to sensor measurement error. SWE sensor response and accuracy were assessed between sensors and through comparison with bulk precipitation gage, manual SWE measurements, and snow pillows. SWE sensor readings compared favorably to other measurement methods, particularly in early and peak season. Spatial variability of SWE during the melt season of the two low-snow years during the study period confounded our ability to compare multiple sensor readings for validation. Spatial variability of SWE at study sites was calculated from sets of manual SWE measurements. The correlation length of 80 cm, determined using semi-variograms, highlights the small scale variability in SWE. Statistical resampling of manual measurements suggests that a minimum of ten manual measurements are needed to get within 10% of the spatial average of SWE. Although SWE can remain relatively stable during the melt period, this can be a result of increased density with decreasing snow depth, suggesting that simple inferences about SWE from depth measurements are not appropriate.

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Another Boom for Amazonia? Examining the Socioeconomic and Environmental Impl...
by Penn, Jr., James W.
   
Book cover thumbnail image
Informalisation as a Strength Community Survival Systems and Economic Developmen...
by Meintjies, Frank
   
Book cover thumbnail image
Private and Public Sector Collaboration in Guam’s ... Is Guam Prepared for the Future?
by Schumann, Fred R.
   
Book cover thumbnail image
Sermons, Systems and Strategies The Geographic Strategies of the Methodist Episcop...
by Nickerson, Michael G.
   
Book cover thumbnail image
Modeling Carbon Fluxes, Net Primary Production, an...
by Goetz, Scott J.