Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Characterizing and controlling program behavior using execution-time variance
by Tushar Kumar
Institution: | Georgia Tech |
---|---|
Year: | 2016 |
Keywords: | Profiling; QoS tuning; Adaptive control; Optimal control; Gain scheduling; LQR; Machine learning; System identification; Parameter estimation; Online training; Multimedia; Video; Gaming; Computer vision; Statistical analysis; Best effort; Probabilis |
Posted: | 02/05/2017 |
Record ID: | 2123510 |
Full text PDF: | http://hdl.handle.net/1853/55000 |
Immersive applications, such as computer gaming, computer vision and video codecs, are an important emerging class of applications with QoS requirements that are difficult to characterize and control using traditional methods. This thesis proposes new techniques reliant on execution-time variance to both characterize and control program behavior. The proposed techniques are intended to be broadly applicable to a wide variety of immersive applications and are intended to be easy for programmers to apply without needing to gain specialized expertise. First, we create new QoS controllers that programmers can easily apply to their applications to achieve desired application-specific QoS objectives on any platform or application data-set, provided the programmers verify that their applications satisfy some simple domain requirements specific to immersive applications. The controllers adjust programmer-identified knobs every application frame to effect desired values for programmer-identified QoS metrics. The control techniques are novel in that they do not require the user to provide any kind of application behavior models, and are effective for immersive applications that defy the traditional requirements for feedback controller construction. Second, we create new profiling techniques that provide visibility into the behavior of a large complex application, inferring behavior relationships across application components based on the execution-time variance observed at all levels of granularity of the application functionality. Additionally for immersive applications, some of the most important QoS requirements relate to managing the execution-time variance of key application components, for example, the frame-rate. The profiling techniques not only identify and summarize behavior directly relevant to the QoS aspects related to timing, but also indirectly reveal non-timing related properties of behavior, such as the identification of components that are sensitive to data, or those whose behavior changes based on the call-context. Advisors/Committee Members: Yalamanchili, Sudhakar (advisor), Pande, Santosh (committee member), Vela, Patricio (committee member), Vuduc, Richard (committee member), Chatterjee, Abhijit (committee member), Ramachandran, Umakishore (committee member).
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Prediction of Upper Body Power of Cross-Country Sk...
|
|
Bitcoins
Mining, Transaction, Security Challenges and Futur...
|
|
Applying User-Centered Interface Design Methods to...
|
|
Head-Order Techniques and Other Pragmatics of Lamb...
|
|
Visualization of Interface Metaphor for Software
An Engineering Approach
|
|
Indoor Wireless Metering Networks
A Collection of Algorithms Enabling Low Power/Low ...
|
|
Automated Generation of Geometrically-Precise and ...
|
|
A Study on the Tone-Reservation Technique for Peak...
|
|