Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Computational Models for Quantifying the Dynamics of Pollen Tube Growth in Video
by Changtao Hou
Institution: | University of California – Riverside |
---|---|
Year: | 2016 |
Keywords: | Physics; Condensed matter physics; Theoretical physics; High Temperature Superconductor; Quantum Criticality; Quantum Phase Transition; Quantum XY Model; Renormalization Group Method |
Posted: | 02/05/2017 |
Record ID: | 2132063 |
Full text PDF: | http://www.escholarship.org/uc/item/3mf1k75p |
This thesis present the recently theoretical and numerical results on 2D dissipative quantum XY model. The two-dimensional quantum XY model is applicable to the quantum critical properties of several experimental systems, such as superconductor to insulator transitions, ferromagnetic and antiferromagnetic transitions in metals, and loop current order transition in the cuprates. Renormalization group methods are applied to solve the reformulated ac- tion of the original model in terms of two type topological excitations: vortices and warps. The calculations explain the extraordinary properties of the model studied through quan- tum Monte Carlo simulations: the separability of the correlation function in space and time, the correlation length in space proportional to logarithm of the correlation length in time near the transition from disordered phase to ordered phase. The running dynamical critical exponent is introduced to address the anisotropy between time and space. The effects of anisotropy fields have been examined through renormalization group method. The transi- tion from disordered phase to ordered phase of this model has been studied by quantum Monte Carlo. The divergence of temporal correlation length in function of (Kc − K)/Kc is examined by numerical simulation. The logarithmic relation between temporal correlation length and spacial correlation length is further confirmed. Also, the same logarithmic rela- tion for different correlation function with different space separation is found and implicitly confirmed the separability of correlation function in space and time.
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Neutron Stars and NuSTAR
A Systematic Survey of Neutron Star Masses in High...
|
|
Functional Domain Motions and Processivity in Bact...
A Molecular Dynamics Study
|
|
The Kiloparsec-Scale Structure and Kinematics of H...
|
|
The Manufacture of High Temperature Superconductin...
|
|
An Improved Form for the Electrostatic Interaction...
|
|
Electronic and Optical Properties of Semiconductor...
A Study Based on the Empirical Tight Binding Model
|
|