Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
by Christopher White
Institution: | Princeton University |
---|---|
Year: | 2016 |
Keywords: | accretion; black hole; general relativity; magnetohydrodynamics; simulation |
Posted: | 02/05/2017 |
Record ID: | 2132291 |
Full text PDF: | http://arks.princeton.edu/ark:/88435/dsp01n296x160r |
We describe the implementation of sophisticated numerical techniques for general-relativistic magnetohydrodynamics simulations in the Athena++ code framework. Improvements over many existing codes include the use of advanced Riemann solvers and of staggered-mesh constrained transport. Combined with considerations for computational performance and parallel scalability, these allow us to investigate black hole accretion flows with unprecedented accuracy. The capability of the code is demonstrated by exploring magnetically arrested disks. Advisors/Committee Members: Stone, James M (advisor).
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Beyond the Blur
Construction and Characterization of the First Aut...
|
|
A Search for Pulsation in Young Brown Dwarfs and V...
|
|
Bridging the Gap
Elusive Explosions in the Local Universe
|
|
Reassessing the Fundamentals
On the Evolution, Ages and Masses of Neutron Stars
|
|
Shapes and Spins of Near-Earth Asteroids
|
|
Magnetic Fields Near and Far
Galactic and Extragalactic Single-Dish Radio Obser...
|
|
Recycled Pulsars
|
|
The Many Facets of Cosmic Explosions
|
|