Abstracts Earth and Environmental Sciences

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

An engineering geological evaluation of non-engineered loess fill and airfall loess Quarry Road, Mt. Pleasant, Christchurch

by Georgina Pearl Willmer

Institution: University of Canterbury
Year: 2016
Posted: 02/05/2017
Record ID: 2134964
Full text PDF: http://hdl.handle.net/10092/12499


Abstract

Following the 22nd February 2011, Mw 6.2 earthquake located along a previously unknown fault beneath the Port Hills of Christchurch, surface cracking was identified in contour parallel locations within fill material at Quarry Road on the lower slopes of Mount Pleasant. GNS Science, in the role of advisor to the Christchurch City Council, concluded that these cracks were a part of a potential rotational mass movement (named zone 11A) within the fill and airfall loess material present. However, a lack of field evidence for slope instability and an absence of laboratory geotechnical data on which slope stability analysis was based, suggested this conclusion is potentially incorrect. It was hypothesised that ground cracking was in fact due to earthquake shaking, and not mass movement within the slope, thus forming the basis of this study. Three soil units were identified during surface and subsurface investigations at Quarry Road: fill derived from quarry operations in the adjacent St. Andrews Quarry (between 1893 and 1913), a buried topsoil, and underlying in-situ airfall loess. The fill material was identified by the presence of organic-rich topsoil “clods” that were irregular in both size (∼10 – 200 mm) and shape, with variable thicknesses of 1 – 10 m. Maximum thickness, as indicated by drill holes and geophysical survey lines, was identified below 6 Quarry Road and 7 The Brae where it is thought to infill a pre-existing gully formed in the underlying airfall loess. Bearing strength of the fill consistently exceeded 300 kPa ultimate below ∼500 mm depth. The buried topsoil was 200 – 300 mm thick, and normally displayed a lower bearing strength when encountered, but not below 300 kPa ultimate (3 – 11 blows per 100mm or ≥100 kPa allowable). In-situ airfall loess stood vertically in outcrop due to its characteristic high dry strength and also showed Scala penetrometer values of 6 – 20+ blows per 100 mm (450 – ≥1000 kPa ultimate). All soils were described as being moist to dry during subsurface investigations, with no groundwater table identified during any investigation into volcanic bedrock. In-situ moisture contents were established using bulk disturbed samples from hand augers and test pitting. Average moisture contents were low at 9% within the fill, 11 % within the buried topsoil, and 8% within the airfall loess: all were below the associated average plastic limit of 17, 15, and 16, respectively, determined during Atterberg limit analysis. Particle size distributions, identified using the sieve and pipette method, were similar between the three soil units with 11 – 20 % clay, 62 – 78 % silt, and 11 – 20 % fine sand. Using these results and the NZGS soil classification, the loess derived fill and in-situ airfall loess are termed SILT with some clay and sand, and the buried topsoil is SILT with minor clay and sand. Dispersivity of the units was found using the Emerson crumb test, which established that the fill can be non- to completely dispersive (score 0 – 4). The buried topsoil was always non-dispersive…

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Relevant publications

Book cover thumbnail image
Scientific Approach Principle for New Resilient Co... Revitalizing Revere Beach, MA - A Case Study for F...
by Kianous, Anahita
   
Book cover thumbnail image
Growth and Productivity of Winter Maize (Zea mays ...
by Shrestha, Jiban
   
Book cover thumbnail image
Hydrological Forecasting with Radar and the Probab...
by Adediran, Gbotemi Abraham
   
Book cover thumbnail image
Agricultural Innovation in Rural India The Paradox of Farmer Nonadoption in Bajwada, Madh...
by Malpani, Natasha
   
Book cover thumbnail image
The Parameters Limiting the Effectiveness of Cumul...
by Taylor, Duncan
   
Book cover thumbnail image
Subsurface Evaluation of Source Rock and Hydrocarb...
by Iheanacho, Ugochukwu Princewill
   
Book cover thumbnail image
Structural and Seismic Facies Interpretation of Fa...
by Olowoyo, Kehinde Oluwatoyin
   
Book cover thumbnail image
Effect of Temperature and Impurities on Surface Te...
by Udeagbara, Stephen Gekwu