Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Quantum States on the Algebra of Dirac Fields: A functional analytic approach
by Simone Murro
Institution: | Universitt Regensburg |
---|---|
Year: | 2017 |
Posted: | 02/01/2018 |
Record ID: | 2153788 |
Full text PDF: | http://epub.uni-regensburg.de/35661 |
The aim of this thesis is to use functional analytic techniques to construct quasifree states on the algebras of observables for massive Dirac fields. We begin by considering the Rindler spacetime. In the two-dimensional setting, the resulting quasifree states coincide with the Fulling-Rindler vacuum and the Unruh state. On the other hand, in the four-dimensional case new quantum states arise. In more general spacetimes, we focus our analysis on families of solutions for the Dirac equation with a varying mass parameter. By introducing a sequence of Mller-like operators, we are able to construct a class of Fermionic signature operators, each of those generates a quantum state. As a final result, we realize an isomorphism between the algebra of massless Dirac fields and the massive one. Along this isomorphism we can pull back quasifree states from the former to the latter algebra. Das Ziel dieser Doktorarbeit ist die Verwendung funktionlanlytischer Techniken um quasifreie Zustnde auf der Algebra von Obervablen fr Dirac Felder mit Masse. Anfangs betrachten wir die Rindler Raum-Zeit. In einem zweidimensionalen Setting sind die quasifreien Zustnde gleich dem Fulling-Rindler Vakuum und dem Unruh-Zustand. Andererseits gibt es im vierdimensionalen Fall weitere Quantenzustnde. In allgemeineren Raum-Zeiten beschrnken wir uns auf die Analysis auf der Familie von Lsungen fr die Dirac-Gleichung mit einem vernderlichem Masseparameter. Durch die Einfrhrung einer Folge von Mller-hnlichen Operatoren sind wir in der Lage eine Klasse von fermionischen Signaturoperatoren, wobei jeder davon einen Quantenzustand generiert. Das Endresultat realisieren wir einen Isomorphismus zwischen der Algebra von masselose Dirac Feldern und denjenigen mit Masse. Entlang dieses Isomorphismus knnen wir die Quantenzustnde mittels eines Pull-Backs von der ersten Algebra auf die letztere zurckziehen.Advisors/Committee Members: Finster, Felix (advisor), Dappiaggi, Claudio (advisor).
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Electric Cooperative Managers' Strategies to Enhan...
|
|
Bullied!
Coping with Workplace Bullying
|
|
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
|
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
|
Performance, Managerial Skill, and Factor Exposure...
|
|
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
|
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
|
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
|
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|
|