Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
A schema conversion approach for constructing heterogeneous information networks from documents
by Hyung Sul Kim
Institution: | University of Illinois Urbana-Champaign |
---|---|
Year: | 2017 |
Keywords: | Information network construction |
Posted: | 02/01/2018 |
Record ID: | 2154271 |
Full text PDF: | http://hdl.handle.net/2142/97387 |
Information networks with multi-typed nodes and edges with different semantics are called heterogenous information networks. Since heterogeneous information networks embed more complex information than homogeneous information networks due to their multi-typed nodes and edges, mining such networks has produced richer knowledge and insights.To extend the application of heterogeneous information network analysis to document analysis, it is necessary to build information networks from a collection of documents while preserving important information in the documents.This thesis describes a schema conversion approach to apply data mining techniques on the outcomes of natural language processing (NLP) tools to construct heterogeneous information networks.First, we utilize named entity recognition (NER) tools to explore networks over entities, topics, and words to demonstrate how a probabilistic model can convert the data schema of the NER tools. Second, we address a pat- tern mining method to construct a network with authors, documents, and writing styles by extracting discriminative writing styles from parse trees and converting them into nodes in a network. Third, we introduce a clustering method to merge redundant nodes in an information network with documents, claims, subjective, objective, and verbs. We use a semantic role labeling (SRL) tool to get initial network structures from news articles, and merge duplicated nodes using a similarity measure SynRank. Finally, we present a novel event mining framework for extracting high-quality structured event knowledge from large, redundant, and noisy news data. The proposed framework ProxiModel utilizes named entity recognition, time expression extraction, and phrase mining tools to get event information from documents.Advisors/Committee Members: Han, Jiawei (Committee Chair), Hockenmaier, Julia (committee member), Zhai, ChengXiang (committee member), Dmitriev, Pavel (committee member).
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Electric Cooperative Managers' Strategies to Enhan...
|
|
Bullied!
Coping with Workplace Bullying
|
|
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
|
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
|
Performance, Managerial Skill, and Factor Exposure...
|
|
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
|
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
|
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
|
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|
|