Abstracts Category : Other

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Electronic device fabrication and characterization based on two-dimensional materials

by Zhengfeng Yang

Institution: University of Illinois Urbana-Champaign
Year: 2017
Keywords: Two-dimensional materials; Molybdenum disulfide (MoS2); Germanium selenide (GeSe); Electronic devices
Posted: 02/01/2018
Record ID: 2154695
Full text PDF: http://hdl.handle.net/2142/97325


Abstract

Two-dimensional (2D) materials have attracted extensive attention due to their unique and remarkable properties, such as the atomically thin body, pristine surface free of dangling bonds, tunable bandgap, and reasonably high mobility, which make 2D materials promising candidates for novel electronic and optoelectronic devices in low power, high performance and flexible applications. In this thesis, the optical and electrical properties of MoS2/WS2 heterostructures grown by chemical vapor deposition (CVD) are studied. By using Raman spectra, photoluminescence (PL) spectra and atomic force microscopy (AFM), the vertical and lateral MoS2/WS2 structures are identified. The transistors and Hall-bar devices based on vertical monolayer-MoS2/monolayer-WS2 heterostructures are successfully fabricated. The devices show typical n-channel characteristics, indicating that MoS2 and WS2 are naturally n-type doped. Due to the type II band alignment and sharp interface, these vertical and lateral MoS2/WS2 heterostructures can potentially be used for tunneling field-effect transistors and high-speed photodetectors. In addition, the crystal orientation and electronic transport in germanium selenide (GeSe) are also studied. The crystallographic direction of the GeSe is determined by angle-resolved polarized Raman measurement. The anisotropic electronic transport of the GeSe is measured by angle-resolved DC electrical conductance. The results indicate that GeSe has a prominent anisotropic electronic transport with maximum conductance likely along the armchair direction. The anisotropic conductance in GeSe may enable a new series of electronic and optoelectronic devices such as plasmonic devices with resonance frequency continuously tunable with light polarization direction, and high-efficiency thermoelectric devices. In summary, the MoS2/WS2 heterostructures and anisotropic electronic transport in GeSe have been studied. The knowledge gained in these projects will be essential for designing and fabricating novel electronic devices based on these materials in the future.Advisors/Committee Members: Zhu, Wenjuan (advisor).

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Featured Books

Book cover thumbnail image
Electric Cooperative Managers' Strategies to Enhan...
by White, Michael Edward
   
Book cover thumbnail image
Bullied! Coping with Workplace Bullying
by Gattis, Vanessa M.
   
Book cover thumbnail image
The Filipina-South Floridian International Interne... Agency, Culture, and Paradox
by Haley, Pamela S.
   
Book cover thumbnail image
Solution or Stalemate? Peace Process in Turkey, 2009-2013
by Yurtbay, Baturay
   
Book cover thumbnail image
Performance, Managerial Skill, and Factor Exposure...
by Avci, S. Burcu
   
Book cover thumbnail image
The Deritualization of Death Toward a Practical Theology of Caregiving for the ...
by Gibson, Charles Lynn
   
Book cover thumbnail image
Emotional Intelligence and Leadership Styles Exploring the Relationship between Emotional Intel...
by Olagundoye, Eniola O.
   
Book cover thumbnail image
Commodification of Sexual Labor Contribution of Internet Communities to Prostituti...
by Young, Jeffrey R.
   
Book cover thumbnail image
The Census of Warm Debris Disks in the Solar Neigh...
by Patel, Rahul I.
   
Book cover thumbnail image
Risk Factors and Business Models Understanding the Five Forces of Entrepreneurial R...
by Miles, D. Anthony