Abstracts Category : Other

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Using Generative Models to Combine Static and Sequential Features for Classification

by Anna Leontjeva

Institution: Tartu University
Year: 2017
Keywords: matemaatilised mudelid; tehispe; klassifitseerimine; mustriotsing; riprotsesside modelleerimine; juhtumiuuringud; mathematical models; automatic learning; classification; pattern search; business process modeling; case studies
Posted: 02/01/2018
Record ID: 2154847
Full text PDF: http://hdl.handle.net/10062/55847


Abstract

Tnapeval veedame suure osa oma ajast vrgus. Me suhtleme suhtlusvrgustikes, ostame asju e-poodides ja haldame pangalekandeid e-panga kaudu. Tihti on meie tegevused seotud rahaliste teenustega, millega kaasnevad ka riski, et raha varastatakse. Petuskeeme on palju ja nad on pidevas muutumises. Teenusepakkujad ritavad meid finantspettuste eest kaitsta erinevatel viisidel, kuid see pakub suuri vljakutseid. Samas, kuna tegu on vrguteenustega, on vimalik salvestada andmeid, mida saab kasutada pettuste automaatse tuvastamise jaoks. Andmed vivad olla erinevatest allikatest ja erineval kujul. Mni informatsioon vib olla staatiline, mis ajas ei muutu, ja mningaid andmeid kogutakse mingi perioodi vltel, ehk nad on jadatunnused. Selleks, et treenida mudelit, mis vimalikult hsti eristab kliente ja pettureid, on oluline kasutada kiki olemasolevaid andmeid. Petturite kttesaamine on ks nide paljudest erinevatest lesannetest, mida saab lahendada automaatse klassifitseerimise abil. Kesolevas vitekirjas me uurime, kuidas kasutada selliseid andmetpe nagu staatilised ja jadatunnused ning kombineerida neid klassifitseerimise eesmargil. Me rakendame erinevaid kombineerimisskeeme kolme lesande puhul erinevatest valdkondadest. Esimene on petturite automaatne tuvastamine. Teine on katseisikute kujutletavate liigutuste ajusignaalide phjal klassifitseerimine ning kolmas on riprotsesside lpptulemuse ennustamine nii varakult kui vimalik. Mida varem me suudame ennustada, et riprotsess vib lppeda trkega, seda rohkem on aega sekkuda olukorra parandamiseks. Antud ts me nitame, et saame tuvastada pettureid, kasutades selleks ainult 4 kuu andmed, ajusignaalide phjal eristada 80% tpsusega katseisiku kujutletavaid liigutusi ning varakult - vaid 5 sndmuse realiseerimisel - ennustada riprotsessi lpptulemust. Need tulemused demonstreerivad, et meie ts pakutud meetod on potentsiaalselt kasulik ka teistes valdkondades klassifitseerimisprobleemide lahendamiseks; Nowadays, major part of our daily activities takes place online, whether we chat in social networks, do shopping, manage our bank accounts. Often such online activities are accompanied by financial transactions, where the suspicious activity is often present. Providers of the services try their best to protect their clients, but it is a challenging task as fraudulent users come up with new schemes and change their strategy. Most of these online activities can be recorded. This data can be used to automate the procedure of fraud detection. Data come from different sources and in different form. Some data include static attributes that do not change over time; some data are sequential, meaning that they capture client behavior over time. In order to build a model that automatically discriminates between clients and fraudulent users we want to incorporate all of the available data in a way that improves the detection. Capturing fraudulent activity is just one example out of the wide variety of problems that can beAdvisors/Committee Members: Dumas, Marlon, juhendaja (advisor), Vilo, Jaak, juhendaja (advisor).

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Featured Books

Book cover thumbnail image
Electric Cooperative Managers' Strategies to Enhan...
by White, Michael Edward
   
Book cover thumbnail image
Bullied! Coping with Workplace Bullying
by Gattis, Vanessa M.
   
Book cover thumbnail image
The Filipina-South Floridian International Interne... Agency, Culture, and Paradox
by Haley, Pamela S.
   
Book cover thumbnail image
Solution or Stalemate? Peace Process in Turkey, 2009-2013
by Yurtbay, Baturay
   
Book cover thumbnail image
Performance, Managerial Skill, and Factor Exposure...
by Avci, S. Burcu
   
Book cover thumbnail image
The Deritualization of Death Toward a Practical Theology of Caregiving for the ...
by Gibson, Charles Lynn
   
Book cover thumbnail image
Emotional Intelligence and Leadership Styles Exploring the Relationship between Emotional Intel...
by Olagundoye, Eniola O.
   
Book cover thumbnail image
Commodification of Sexual Labor Contribution of Internet Communities to Prostituti...
by Young, Jeffrey R.
   
Book cover thumbnail image
The Census of Warm Debris Disks in the Solar Neigh...
by Patel, Rahul I.
   
Book cover thumbnail image
Risk Factors and Business Models Understanding the Five Forces of Entrepreneurial R...
by Miles, D. Anthony