Abstracts Category : Other

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Towards Human-Like Automated Driving| Learning Spacing Profiles from Human Driving Data

by Syed Ali

Institution: Wayne State University
Year: 2017
Keywords: Computer engineering; Automotive engineering; Artificial intelligence
Posted: 02/01/2018
Record ID: 2156402
Full text PDF: http://pqdtopen.proquest.com/#viewpdf?dispub=10637971


Abstract

For automated driving vehicles to be accepted by their users and safely integrate with traffic involving human drivers, they need to act and behave like human drivers. This not only involves understanding how the human driver or occupant in the automated vehicle expects their vehicle to operate, but also involves how other road users perceive the automated vehicles intentions. This research aimed at learning how drivers space themselves while driving around other vehicles. It is shown that an optimized lane change maneuver does create a solution that is much different than what a human would do. There is a need to learn complex driving preferences from studying human drivers. This research fills the gap in terms of learning human driving styles by providing an example of learned behavior (vehicle spacing) and the needed framework for encapsulating the learned data. A complete framework from problem formulation to data gathering and learning from human driving data was formulated as part of this research. On-road vehicle data were gathered while a human driver drove a vehicle. The driver was asked to make lane changes for stationary vehicles in his path with various road curvature conditions and speeds. The gathered data, as well as Learning from Demonstration techniques, were used in formulating the spacing profile as a lane change maneuver. A concise feature set from captured data was identified to strongly represent a drivers spacing profile and a model was developed. The learned model represented the drivers spacing profile from stationary vehicles within acceptable statistical tolerance. This work provides a methodology for many other scenarios from which human-like driving style and related parameters can be learned and applied to automated vehicles

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Featured Books

Book cover thumbnail image
Electric Cooperative Managers' Strategies to Enhan...
by White, Michael Edward
   
Book cover thumbnail image
Bullied! Coping with Workplace Bullying
by Gattis, Vanessa M.
   
Book cover thumbnail image
The Filipina-South Floridian International Interne... Agency, Culture, and Paradox
by Haley, Pamela S.
   
Book cover thumbnail image
Solution or Stalemate? Peace Process in Turkey, 2009-2013
by Yurtbay, Baturay
   
Book cover thumbnail image
Performance, Managerial Skill, and Factor Exposure...
by Avci, S. Burcu
   
Book cover thumbnail image
The Deritualization of Death Toward a Practical Theology of Caregiving for the ...
by Gibson, Charles Lynn
   
Book cover thumbnail image
Emotional Intelligence and Leadership Styles Exploring the Relationship between Emotional Intel...
by Olagundoye, Eniola O.
   
Book cover thumbnail image
Commodification of Sexual Labor Contribution of Internet Communities to Prostituti...
by Young, Jeffrey R.
   
Book cover thumbnail image
The Census of Warm Debris Disks in the Solar Neigh...
by Patel, Rahul I.
   
Book cover thumbnail image
Risk Factors and Business Models Understanding the Five Forces of Entrepreneurial R...
by Miles, D. Anthony