Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
by Kaixuan Liu
Institution: | Universit Lille I Sciences et Technologies |
---|---|
Year: | 2017 |
Keywords: | Ajustement du vtement valuation; Confort vestimentaire; 006.31 |
Posted: | 02/01/2018 |
Record ID: | 2158632 |
Full text PDF: | http://www.theses.fr/2017LIL10020 |
Le design et le bien aller dun vtement joue un rle majeur pour lindustrie du textile-habillement. Actuellement, il apparait trois inconvnients majeurs dans le processus de cration et dvaluation dun vtement : il est trs coteux en temps pour une efficacit moindre, il est subordonn lexprience des designers et modlistes, il nest pas adapt au e-commerce.Afin de rsoudre cette problmatique, trois concepts la fois technologiques et mathmatiques ont t dveloppes. Le premier sappuie sur loutil GFPADT (Garment Flat and Pattern Associated design technology) permettant de crer une correspondance entre le style du vtement choisi et la morphologie du consommateur. Le second utilise linteractivit entre deux espaces de conception 2D et 3D intgre loutil 3DIGPMT (3D Interactive Garment Pattern Making Technology). Le dernier appel MLBGFET (Machine learning-based Garment Fit Evaluation Technology) value lajustement du vtement par un apprentissage automatique. Finalement, nous avons fourni des solutions de conception et d'valuation de vtements bases sur la connaissance en intgrant ces trois concepts bass sur des technologies cls pour rsoudre certains problmes de conception et de production de vtements dans les entreprises de mode. Fashion design and fit evaluation play a very important role in the clothing industry. Garment style and fit directly determine whether a customer buys the garment or not. In order to develop a fit garment, designers and pattern makers should adjust style and pattern many times until the satisfaction of their customers. Currently, the traditional fashion design and fit evaluation have three main shortcomings: 1) very time-consuming and low efficiency, 2) requiring experienced designers, and 3) not suitable for garment e-shopping. In my Ph.D. thesis, we propose three key technologies to improve the current design processes in the clothing industry. The first one is the Garment Flat and Pattern Associated design technology (GFPADT). The second one is the 3D interactive garment pattern making technology (3DIGPMT). The last one is the Machine learning-based Garment Fit Evaluation technology (MLBGFET). Finally, we provide a number of knowledge-based garment design and fit evaluation solutions (processes) by combining the proposed three key technologies to deal with garment design and production issues of fashions companies.Advisors/Committee Members: Zeng, Xianyi (thesis director), Wang, Jianping (thesis director), Bruniaux, Pascal (thesis director), Tao, Xuyuan (thesis director).
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Electric Cooperative Managers' Strategies to Enhan...
|
|
Bullied!
Coping with Workplace Bullying
|
|
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
|
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
|
Performance, Managerial Skill, and Factor Exposure...
|
|
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
|
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
|
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
|
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|
|