Abstracts Category : Other

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

tude de marches alatoires sur un arbre de Galton-Watson : Study of random walks on a Galton-Watson tree

by Raphlis-Soissan Loc De

Institution: Universit Pierre et Marie Curie Paris VI
Year: 2017
Keywords: Limite d'chelle; Marche alatoire; Arbre de Galton-Watson; Arbre rel; Mouvement brownien; Processus stable; Branching process; Random walk; Galton-Watson tree; 510
Posted: 02/01/2018
Record ID: 2160884
Full text PDF: http://www.theses.fr/2017PA066056


Abstract

Ce travail est consacr l'tude de limites d'chelle de diffrentes fonctionnelles de marches alatoires sur un arbre de Galton-Watson, potentiellement en milieu alatoire. La marche alatoire que nous considrons sur cet arbre est une marche aux plus proches voisins rcurrente nulle, dont les probabilits de transition dpendent de l'environnement. Plus particulirement, nous tudions la trace de la marche, c'est--dire le sous-arbre constitu des sommets visits par celle-ci. Nous considrons d'abord le cas o dans un certain sens l'environnement est variance finie, et nous montrons que bien renormalise la trace converge vers la fort brownienne. Nous considrons ensuite des hypothses plus faibles, et nous montrons que la fonction de hauteur de la marche (c'est--dire la suite des hauteurs prises par la marche) converge vers le processus de hauteur en temps continu d'un processus de Lvy spectralement positif strictement stable, et que la trace de la marche converge vers l'arbre rel cod par ce mme processus. La stratgie employe pour tablir ces rsultats repose sur l'tude d'un type d'arbres que nous introduisons dans cette thse : ceux-ci sont des arbres de Galton-Watson deux types, l'un des types tant strile, et longueur d'arte. Notre principal rsultat concernant ces arbres assure que leur fonction de hauteur satisfait un principe d'invariance, similaire celui vrifi par les arbres de Galton-Watson simples. Ces arbres trouvent galement une application directe dans les arbres de Galton-Watson multitype infinit de types, un lien explicite entre les deux nous permettant de montrer qu'ils satisfont galement le mme principe d'invariance. This work is devoted to the study of scaling limits of different functionals of random walks on a Galton-Watson tree, potentially in random environment. The randow walk we consider is a null recurrent nearest-neigbout random walk, the probability transition of which depend on the environment. More precisely, we study the trace of the walk, that is the sub-tree made up of the vertices visited by the walk. We first consider the case where in a certain sense the environment has finite variance, and we show that when well-renormalised, the trace converges towards the Brownian forest. We then consider hypotheses of regular variation on the environement, and we show that the height function of the walk (that is the sequence of heights in the tree of the walk) converges towards the continuous time height process of a spectrally positive strictly stable Lvy process, and that the trace of the walk converges towards the real tree coded by this very process. The strategy used to prove these two results is based on the study of a certain kind of trees that we introduce in this thesis: they are Galton-Watson trees with two types, one of which being sterile, and with edge lengths. Our main result about these trees states that their height functions satisfies an invariance principle, similar to that verified by simple Galton-Watson trees. These trees also find aAdvisors/Committee Members: Adekon, Elie (thesis director), Shi, Zhan (thesis director).

Add abstract

Want to add your dissertation abstract to this database? It only takes a minute!

Search abstract

Search for abstracts by subject, author or institution

Share this abstract

Featured Books

Book cover thumbnail image
Electric Cooperative Managers' Strategies to Enhan...
by White, Michael Edward
   
Book cover thumbnail image
Bullied! Coping with Workplace Bullying
by Gattis, Vanessa M.
   
Book cover thumbnail image
The Filipina-South Floridian International Interne... Agency, Culture, and Paradox
by Haley, Pamela S.
   
Book cover thumbnail image
Solution or Stalemate? Peace Process in Turkey, 2009-2013
by Yurtbay, Baturay
   
Book cover thumbnail image
Performance, Managerial Skill, and Factor Exposure...
by Avci, S. Burcu
   
Book cover thumbnail image
The Deritualization of Death Toward a Practical Theology of Caregiving for the ...
by Gibson, Charles Lynn
   
Book cover thumbnail image
Emotional Intelligence and Leadership Styles Exploring the Relationship between Emotional Intel...
by Olagundoye, Eniola O.
   
Book cover thumbnail image
Commodification of Sexual Labor Contribution of Internet Communities to Prostituti...
by Young, Jeffrey R.
   
Book cover thumbnail image
The Census of Warm Debris Disks in the Solar Neigh...
by Patel, Rahul I.
   
Book cover thumbnail image
Risk Factors and Business Models Understanding the Five Forces of Entrepreneurial R...
by Miles, D. Anthony