Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
by Douglas Armstrong
Institution: | South Dakota State University |
---|---|
Year: | 2017 |
Keywords: | Bayes factor; Evidence quantification; Forensic statistics; High-dimensional; Kernel method; Statistical Theory; Statistics and Probability |
Posted: | 02/01/2018 |
Record ID: | 2165937 |
Full text PDF: | https://openprairie.sdstate.edu/etd/2175 |
The inference of the source of forensic evidence is related to model selection. Many forms of evidence can only be represented by complex, high-dimensional random vectors and cannot be assigned a likelihood structure. A common approach to circumvent this is to measure the similarity between pairs of objects composing the evidence. Such methods are ad-hoc and unstable approaches to the judicial inference process. While these methods address the dimensionality issue they also engender dependencies between scores when 2 scores have 1 object in common that are not taken into account in these models. The model developed in this research captures the dependencies between pairwise scores from a hierarchical sample and models them in the kernel space using a linear model. Our model is flexible to accommodate any kernel satisfying basic conditions and as a result is applicable to any type of complex high-dimensional data. An important result of this work is the asymptotic multivariate normality of the scores as the data dimension increases. As a result, we can: 1) model very high-dimensional data when other methods fail; 2) determine the source of multiple samples from a single trace in one calculation. Our model can be used to address high-dimension model selection problems in different situations and we show how to use it to assign Bayes factors to forensic evidence. We will provide examples of real-life problems using data from very small particles and dust analyzed by SEM/EDX, and colors of fibers quantified by microspectrophotometry. Advisors/Committee Members: Cedric Neumann.
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Electric Cooperative Managers' Strategies to Enhan...
|
|
Bullied!
Coping with Workplace Bullying
|
|
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
|
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
|
Performance, Managerial Skill, and Factor Exposure...
|
|
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
|
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
|
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
|
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|
|