Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Accelerated incremental listwise learning to rank for collaborative filtering
by Eduardo Jorge Brgel
Institution: | Universidade Federal de Santa Catarina |
---|---|
Year: | 2017 |
Posted: | 02/01/2018 |
Record ID: | 2166628 |
Full text PDF: | https://repositorio.ufsc.br/xmlui/handle/123456789/181254 |
O enorme volume de informao hoje em dia aumenta a complexidade e degrada a qualidade do processo de tomada de deciso. A fim de melhorar a qualidade das decises, os sistemas de recomendao tm sido utilizados com resultados considerveis. Nesse contexto, a filtragem colaborativa desempenha um papel ativo em superar o problema de sobrecarga de informao. Em um cenrio em que novas avaliaes so recebidas constantemente, um modelo esttico torna-se ultrapassado rapidamente, portanto a velocidade de atualizao do modelo um fator crtico. Propomos um mtodo de aprendizagem de ranqueamento incremental acelerado para filtragem colaborativa. Para atingir esse objetivo, aplicamos uma tcnica de acelerao a uma abordagem de aprendizado incremental para filtragem colaborativa. Resultados em conjuntos de dados reais confirmam que o algoritmo proposto mais rpido no processo de aprendizagem mantendo a preciso do modelo.; Abstract : The enormous volume of information nowadays increases the complexity of the decision-making process and degrades the quality of decisions. In order to improve the quality of decisions, recommender systems have been applied with significant results. In this context, the collaborative filtering technique plays an active role overcoming the information overload problem. In a scenario where new ratings have been received constantly, a static model becomes outdated quickly, hence the rate of update of the model is a critical factor. We propose an accelerated incremental listwise learning to rank approach for collaborative filtering. To achieve this, we apply an acceleration technique to an incremental collaborative filtering approach. Results on real word datasets show that our proposal accelerates the learning process and keeps the accuracy of the model.Advisors/Committee Members: Marchi, Jerusa (advisor), Spinosa, Eduardo Jaques (advisor).
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Electric Cooperative Managers' Strategies to Enhan...
|
|
Bullied!
Coping with Workplace Bullying
|
|
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
|
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
|
Performance, Managerial Skill, and Factor Exposure...
|
|
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
|
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
|
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
|
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|
|