Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Validation of SQL queries over streaming warehouses
by Ritika Jain
Institution: | University of British Columbia |
---|---|
Year: | 2017 |
Posted: | 02/01/2018 |
Record ID: | 2168418 |
Full text PDF: | http://hdl.handle.net/2429/62867 |
There is often a need to recover the missing query that produced a particular outputfrom a data stream. As an example, since a data stream is constantly evolving,the analyst may be curious about using the query from the past to evaluate it on thecurrent state of the data stream, for further analysis. Previous research has studiedthe problem of reverse engineering a query that would produce a given result at aparticular database state.We study the following problem. Given a streaming database D=<D0,D1,D2..>,a result Rout , and a set of candidate queries Q, efficiently find all queries Qi Qsuch that for some state Dji of the stream, Qi(Dji) = Rout , and report the pair(Q,witQ) where witQ is the witness of (in)validity. A witness for a valid queryQval is a state Di s.t. Qval(Di) = Rout. For an invalid query Qinval , a witness is a pairof consecutive states (Di, Di+1) such that Rout Qinval (Di) Qinval (Di+1) Rout.We allow any PTIME computable monotone query to be included in Q. Whiletechniques developed in previous research can be used to generate the candidatequery set Q, we focus on developing a scalable strategy for quickly determiningthe witness. We establish theoretical worst-case performance guarantees for ourproposed approach and show that it is no more than a factor of O(log |DRDS|) of theoptimal Lucky guess strategy, where Q(DRDS) = Rout. We empirically evaluateour technique and compare with natural baselines inspired from previous research.We show that the baselines either fail to scale or incur an inordinate amount ofoverhead by failing to take advantage of natural properties of a data stream. Bycontrast, our strategy scales effortlessly for very large data streams. Moreover,it never performs more than a small constant times the optimal amount of work,regardless of the state of the data stream that may have led to Rout.
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Electric Cooperative Managers' Strategies to Enhan...
|
|
Bullied!
Coping with Workplace Bullying
|
|
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
|
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
|
Performance, Managerial Skill, and Factor Exposure...
|
|
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
|
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
|
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
|
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|
|