Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
by Emily Miner Gustafson
Institution: | Colorado School of Mines |
---|---|
Year: | 2018 |
Keywords: | membrane distillation; silica; desalination; ultafiltration; nanofiltration |
Posted: | 02/01/2018 |
Record ID: | 2188438 |
Full text PDF: | http://hdl.handle.net/11124/172045 |
The interdependence of water and energy, or the water-energy nexus, exacerbates the stress on both fresh water and energy resources. Power plants require high volumes of water for cooling purposes. Treated impaired groundwater is one alternative source of cooling tower make-up water. These water sources often contain high concentrations of low-solubility minerals such as silica. Oversaturation of silica can cause polymerization, leading to colloidal deposits, which are very difficult to remove from surfaces. Water from a geothermal power plant located in northeastern Nevada was selected for this study. Currently, more than 37% of the make-up water in the plant is wasted as blowdown because of the presence of silica, despite chemical treatment with numerous antiscalants. This study explores the best operating conditions of three membrane treatment processes: nanofiltration (NF), ultrafiltration (UF), and membrane distillation (MD) to enhance water recovery and potentially recover colloidal silica for beneficial use. Dows NF90 membrane was selected for testing. A model to predict concentrations of silica on the membrane surface was experimentally validated and used to determine an optimal water recovery of 82% for the treated water. The NF concentrate was used as feed in the UF to concentrate colloidal silica. A sustainable UF operation was achieved, demonstrated through 90% water recovery and 0.4%/w colloidal silica in the concentratefacilitated by chemically enhanced backwashing. UF was also investigated as pretreatment to NF, clarifying NF concentrate and returning the permeate into the NF feed; however, the operation was unsustainable. Lastly, MD was explored as a desalination process for water recovery from NF concentrate, and demonstrated that 95% water recovery can be achieved when treating water containing high concentrations of silica.Advisors/Committee Members: Cath, Tzahi Y. (advisor), Vanneste, Johan (committee member), Bellona, Christopher (committee member).
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Electric Cooperative Managers' Strategies to Enhan...
|
|
Bullied!
Coping with Workplace Bullying
|
|
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
|
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
|
Performance, Managerial Skill, and Factor Exposure...
|
|
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
|
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
|
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
|
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|
|