Add abstract
Want to add your dissertation abstract to this database? It only takes a minute!
Search abstract
Search for abstracts by subject, author or institution
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
by Ayden Gouveia
Institution: | University of Ottawa |
---|---|
Year: | 2017 |
Keywords: | Stroke; Neurogenesis; Angiogenesis; aPKC; CBP |
Posted: | 02/01/2018 |
Record ID: | 2192002 |
Full text PDF: | http://hdl.handle.net/10393/35674 |
Ischemic stroke related brain damage causes loss of multiple cell types, including neural and vascular cells. The extent of post-stroke neurogenesis and angiogenesis predicts the level of functional regeneration/recovery after stroke. In this regard, my thesis was focused on defining the molecular process that modulates post-stroke functional recovery by co-ordinating post-stroke neurovascular remodeling. Since stroke-related brain damage releases enriched local microenvironmental cues, I examined the role of a signaling-induced epigenetic pathway, an atypical protein kinase C (aPKC)-mediated phosphorylation of CREB Binding Protein (CBP), in regulating post-stroke neurovascular remodeling and functional recovery. This pathway has previously been shown to be activated by metformin, an adenosine monophosphate kinase (AMPK) activator, to promote the differentiation of neural precursors in the developing and adult brain. Here, I first developed a murine focal cortical ischemic stroke model with persistent motor function deficits by combined intra-cortical injections of endothelin-1 (ET-1) and L-NAME into the sensorimotor cortex. Second, I applied the ET-1/L-Name-induced focal cortical stroke model in a knock-in mouse CBPS436A where the aPKC-CBP pathway is deficient, and showed that the aPKC-CBP pathway is involved in post-stroke functional recovery by coordinating neurovascular remodeling. Specifically, CBPS436A-KI mice displayed reduced motor recovery, correlated with reduced vascular remodeling and impaired post-stroke angiogenesis. Intriguingly, I also observed that CBPS436A-KI mice showed a reduction in the population of stroke-induced newborn pericytes but an increase in the population of perivascularly-derived neural precursors, implying that the aPKC-CBP pathway may be involved in the process that reprograms pericytes into neural precursors. Together, this study elucidates the novel role of the aPKC-CBP pathway in modulating neurovascular remodeling and functional recovery following focal ischemic cortical stroke.
Want to add your dissertation abstract to this database? It only takes a minute!
Search for abstracts by subject, author or institution
Electric Cooperative Managers' Strategies to Enhan...
|
|
Bullied!
Coping with Workplace Bullying
|
|
The Filipina-South Floridian International Interne...
Agency, Culture, and Paradox
|
|
Solution or Stalemate?
Peace Process in Turkey, 2009-2013
|
|
Performance, Managerial Skill, and Factor Exposure...
|
|
The Deritualization of Death
Toward a Practical Theology of Caregiving for the ...
|
|
Emotional Intelligence and Leadership Styles
Exploring the Relationship between Emotional Intel...
|
|
Commodification of Sexual Labor
Contribution of Internet Communities to Prostituti...
|
|
The Census of Warm Debris Disks in the Solar Neigh...
|
|
Risk Factors and Business Models
Understanding the Five Forces of Entrepreneurial R...
|
|